Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew Feb 2021

Computational Modelling Enables Robust Multidimensional Nanoscopy, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

The following sections are included:

  • Present State of Computational Modelling in Fluorescence Nanoscopy

  • Recent Contributions to Computational Modelling in Fluorescence Nanoscopy

  • Outlook on Computational Modelling in Fluorescence Nanoscopy

  • Acknowledgments

  • References


Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic Apr 2017

Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic

Aviation Department Publications

A valveless shear-driven micro-fluidic pump design (SDMFP) for hemodynamic applications is presented in this work. One of the possible medical and biomedical applications is in-vivo hemodynamic (human blood circulation) support/assist. One or more SDMFPs can be inserted/implanted into vascular lumens in a form of a stent/duct in series and/or in parallel (bypass duct) to support blood circulation in-vivo. A comprehensive review of various micro-pump designs up to about mid 2000’s is given in [1,2]. Many of micropump designs considered are not suitable for in-vivo or even in-vitro medical/biomedical applications.

Operating principles, design, and SDMFP features are given in [3]. A …


Multiphysics Modeling To Enhance Understanding Of Microwave Heating Of Food In Domestic Ovens, Jiajia Chen Jun 2015

Multiphysics Modeling To Enhance Understanding Of Microwave Heating Of Food In Domestic Ovens, Jiajia Chen

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Nonuniform heating is the biggest issue in the microwave heating of prepared meals. Multiphysics based models are promising tools to improve microwave heating uniformity by properly designing the food product. However, limited availability of accurate temperature-dependent material properties, inadequate model prediction accuracy, and high computational power and complexity in model development are three gaps that greatly limited the application of these models in the food industry.

To fill in the gaps, firstly, we developed a multitemperature calibration protocol to measure temperature-dependent dielectric properties (dielectric constant and loss factor). The temperature-dependent dielectric and thermal (thermal conductivity and specific heat capacity) properties …