Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Cardio-Net: A Matlab-Based Software For The Display And Diagnostic Utilization Of Vectorcardiograms, Ali H. Mannaa, Domenico Gatti Jun 2022

Cardio-Net: A Matlab-Based Software For The Display And Diagnostic Utilization Of Vectorcardiograms, Ali H. Mannaa, Domenico Gatti

Medical Student Research Symposium

Background: The 12-lead technique is the standard in ECG, however alternate cardiography modalities such as vectorcardiography (VCG) exist . While the VCG modality offers unique clinical metrics and certain advantages over ECG, it is hardly utilized due to it being more difficult to obtain than ECG. Here we introduce Cardio-Net, a MATLAB-based software that uses standard 12-lead ECG data to generate and visualize VCGs. Furthermore, we demonstrate the diagnostic potential of VCG by utilizing a recurrent neural network (RNN) to accurately classify vectorcardiograms.

Methods: MATLAB version 2019b and the following toolboxes were used for data processing: Deep learning, …


Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller Oct 2021

Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller

Sanders-Brown Center on Aging Faculty Publications

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the …


Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han Jul 2020

Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han

Public Health Faculty Publications

The study aims were to develop fracture prediction models by using machine learning approaches and genomic data, as well as to identify the best modeling approach for fracture prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (n = 5130), were analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated from 1103 associated Single Nucleotide Polymorphisms for each participant. Data were normalized and split into a training set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, neural network, and logistic regression were used to develop prediction models for major osteoporotic fractures …


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis has …


Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad Oct 2017

Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad

Neurology Faculty Publications

Brain imaging genetics intends to uncover associations between genetic markers and neuroimaging quantitative traits. Sparse canonical correlation analysis (SCCA) can discover bi-multivariate associations and select relevant features, and is becoming popular in imaging genetic studies. The L1-norm function is not only convex, but also singular at the origin, which is a necessary condition for sparsity. Thus most SCCA methods impose 1-norm onto the individual feature or the structure level of features to pursuit corresponding sparsity. However, the 1-norm penalty over-penalizes large coefficients and may incurs estimation bias. A number of non-convex penalties are proposed to reduce …


A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.) Jan 2015

A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.)

Electrical & Computer Engineering Faculty Publications

MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images.

We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. …


Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.) Jan 2011

Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.)

Electrical & Computer Engineering Faculty Publications

In a recent study [1], we investigated the feasibility of predicting brain tumor progression based on multiple MRI series and we tested our methods on seven patients' MRI images scanned at three consecutive visits A, B and C. Experimental results showed that it is feasible to predict tumor progression from visit A to visit C using a model trained by the information from visit A to visit B. However, the trained model failed when we tried to predict tumor progression from visit B to visit C, though it is clinically more important. Upon a closer look at the MRI scans …