Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani Aug 2021

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani

Electronic Theses and Dissertations

Until recently, study and correction of motor or gait functions required costly sensors and measurement setups (e.g., optical motion capture systems) which were only available in laboratories or clinical environments. However, due to (1) the growing availability and affordability of inertial measurement units (IMUs) with high accuracy, and (2) progress in wireless, high bandwidth, and energy-efficient networking technologies such as Bluetooth Low Energy (BLE), it is now possible to measure and provide feedback in real-time for biomechanical parameters outside of those specialized settings. To enable gait training without an expert who can provide verbal feedback, augmented feedback, which is divided …


Development Of A Pneumatically Controllable Microdroplet Generator With Electrical Sensing, Gnanesh Nagesh Jul 2021

Development Of A Pneumatically Controllable Microdroplet Generator With Electrical Sensing, Gnanesh Nagesh

Electronic Theses and Dissertations

Microfluidic droplet generation is popular in lab-on-a-chip based biochemical analysis because it can provide precise and high throughput fluids in the form of small droplets. This thesis presents a T-junction microdroplet generator with pneumatic actuation for regulating droplet size and a capacitance-based sensor with real-time sensing capability for characterizing droplet composition and size. The multi-layer device developed in this thesis is compatible with rapid manufacturing using a desktop-based laser cutter to fabricate the fluidic and pneumatic layers. A finite element based numerical model was developed to predict the best operating and geometric parameters for droplet generation. It was revealed that …


Gait Rehabilitation Using Biomechanics And Exoskeletons, Jacob Bloom May 2021

Gait Rehabilitation Using Biomechanics And Exoskeletons, Jacob Bloom

Electronic Theses and Dissertations

A healthy gait is often taken for granted when walking. However, if a stroke, spinal cord injury (SCI), or traumatic event occurs the ability to walk may be lost. In order to relearn how to walk, gait rehabilitation is required. Including arm swing in gait rehabilitation has been shown to help in this process. This thesis presents two tasks to investigate the mechanics of arm swing and ways to provide assistance to induce arm swing in gait rehabilitation.

The firsts task completed was a study on the effects of forearm movement during gait. Twelve healthy subjects walked under three conditions …


Simulation Of Fracture Strength Improvements Of A Human Proximal Femur Using Finite Element Analysis., Waleed Ebraheem Alim May 2021

Simulation Of Fracture Strength Improvements Of A Human Proximal Femur Using Finite Element Analysis., Waleed Ebraheem Alim

Electronic Theses and Dissertations

The most common hip fracture in the elderly occurs as a result of a fall to the side with impact over the greater trochanter resulting in a fracture of the proximal femur. The fracture usually involves the femoral neck or the intertrochanteric region. It has recently been determined that the fracture crack of a hip fracture typically initiates on the superior-lateral cortex of the femoral neck and then propagates across the femoral neck, resulting in a complete fracture. The strength of the superior-lateral cortex of the femoral neck is likely determined by the combined properties of the generally thin cortex …


Rational Design Of Advanced Functional Materials For Electrochemical Devices, Shun Lu Jan 2021

Rational Design Of Advanced Functional Materials For Electrochemical Devices, Shun Lu

Electronic Theses and Dissertations

In recent years, there has been a fast-growing trend in developing urea (CO(NH2)2) as a substitute H2 carrier in energy conversion due to its high energy density, nontoxicity, stability, and nonflammability. Urea, a byproduct in the metabolism of proteins and a frequent contaminant in wastewater, is an abundant compound that has demonstrated favorable characteristics as a hydrogen-rich fuel source with 6.7 wt % gravimetric hydrogen content. Also, there is 2-2.5 wt % urea from mammal urine; therefore, 0.5 million ton of additional fuels will be produced per year just from human urine (240 million ton each year). Electrochemical oxidation has …


Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang Jan 2021

Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang

Electronic Theses and Dissertations

Cemented and cementless fixation in total knee arthroplasty (TKA) have been successfully used for decades. As the number of younger and more active patients treated with TKA continues to increase, long-term implant survivorship is of increasing importance. One of the most common complications and hence the reason for revision is mechanical loosening (23.1% of all revised TKA). The loosening mechanisms have been proposed for different fixation types. For cemented fixation, bone remodeling after surgery is regulated by the changes in strain energy density (SED). The recruitment of osteoclasts and osteoblasts is controlled by SED-related signals. Insufficient stimuli can promote bone …


An Accuracy And Precision Analysis Of The Velys™ Robotic Assisted Solution For Total Knee Arthroplasty, Gary Doan Jan 2021

An Accuracy And Precision Analysis Of The Velys™ Robotic Assisted Solution For Total Knee Arthroplasty, Gary Doan

Electronic Theses and Dissertations

Total knee arthroplasty (TKA) is a procedure where the arthritic surfaces of the knee is removed and replaced with a combination of metal and polymer implants that recreates the joint line to restore function and quality of life. Implant alignment is important in the success of a TKA. Modern day conventional instrumentation can be cumbersome in the operating room and can be inaccurate when resecting bone and aligning implants. Patients with large errors in resections and implant orientation are more prone to experience mechanical failures with their TKA. Mechanical failures in primary TKA require revision surgeries which can lead to …