Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biomedical Engineering and Bioengineering

Effect Of Extracellular Matrix (Ecm) Protein Micropatterns On The Behavior Of Human Neuroblastoma Cells, Ishwari Poudel Dec 2011

Effect Of Extracellular Matrix (Ecm) Protein Micropatterns On The Behavior Of Human Neuroblastoma Cells, Ishwari Poudel

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Recent advances in patterning techniques and emerging surface microtechnologies have allowed cell micropatterning to control spatial location of the cells on a surface as well as cell shape, attachment area, and number of contacting neighbor cells. These parameters play important roles in cell cellular behaviors. Cell micropatterning has thus become one of the most important strategies for biomedical applications, such as, tissue engineering, diagnostic immunoassays, lab-on-chip devices, bio-sensing, etc., and cell biology studies as well. For neuronal cells, there have been attempts to distribute neuronal cells on specific patterns to control cell-to-cell interaction. However, there have been very limited understanding …


Photolithographic Surface Micromachining Of Polydimethylsiloxane (Pdms), Weiqiang Chen, Raymond H. W. Lam, Jianping Fu Nov 2011

Photolithographic Surface Micromachining Of Polydimethylsiloxane (Pdms), Weiqiang Chen, Raymond H. W. Lam, Jianping Fu

Weiqiang Chen

A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our …


Direct Pore‐Level Observation Of Permeability Increase In Two‐Phase Flow By Shaking, Igor A. Beresnev, William Gaul, R. Dennis Vigil Oct 2011

Direct Pore‐Level Observation Of Permeability Increase In Two‐Phase Flow By Shaking, Igor A. Beresnev, William Gaul, R. Dennis Vigil

R. Dennis Vigil

Increases in permeability of natural reservoirs and aquifers by passing seismic waves have been well documented. If the physical causes of this phenomenon can be understood, technological applications would be possible for controlling the flow in hydrologic systems or enhancing production from oil reservoirs. The explanation of the dynamically increased mobility of underground fluids must lie at the pore level. The natural fluids can be viewed as two-phase systems, composed of water as the wetting phase and of dispersed non-wetting globules of gas or organic fluids, flowing through tortuous constricted channels. Capillary forces prevent free motion of the suspended non-wetting …


Improved Manufacturing Methods Of Bovine Femur Samples For Ultrasonic Testing And Assessment Of Materials Through Contract Angle Measurement, Kevin Mathew Lopez Galang Sep 2011

Improved Manufacturing Methods Of Bovine Femur Samples For Ultrasonic Testing And Assessment Of Materials Through Contract Angle Measurement, Kevin Mathew Lopez Galang

Biomedical Engineering

At California Polytechnic State University of San Luis Obispo (Cal Poly), the Biomedical Engineering department (BMED) requires its students to take the course listed as “BMED 420: Principles of Biomaterial Designs.” BMED 420 has a required laboratory section every week throughout the duration of the course that is meant to be a supplemental tool for learning. During the lab sections, students perform experiments and exercises that are currently being implemented in the industry. Despite accuracy of the methods and experiments relative to their use in the industry, there is always room for improvement. The objective of this project will illustrate …


Thickness Of Residual Wetting Film In Liquid-Liquid Displacement, Igor A. Beresnev, William Gaul, R .Dennis Vigil Aug 2011

Thickness Of Residual Wetting Film In Liquid-Liquid Displacement, Igor A. Beresnev, William Gaul, R .Dennis Vigil

R. Dennis Vigil

Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a nonwetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. Here we develop a hydrodynamic, …


Quantitative Analysis Of The Reaction Between Gliadin And Citric Acid Under Weak Acidic And Weak Alkaline Conditions, Wei Li Jul 2011

Quantitative Analysis Of The Reaction Between Gliadin And Citric Acid Under Weak Acidic And Weak Alkaline Conditions, Wei Li

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Gliadin was reacted with citric acid under weak acidic and weak alkaline conditions in both wet and dry states and the reaction mechanism was studied. The low morphological stability in an aqueous environment and inferior mechanical properties have restricted the applications of plant proteins, although these materials possess a unique structure, biocompatibility and biodegradability. Carboxylic acids such as citric acid are inexpensive and nontoxic chemicals and are preferred for crosslinking proteins and cellulose to improve the desired properties of the materials.

In this study, gliadin was chosen as a model of plant proteins to react with citric acid. However, previous …


Forced Instability Of Core-Annular Flow In Capillary Constrictions, Igor A. Beresnev, William Gaul, R. Dennis Vigil Jul 2011

Forced Instability Of Core-Annular Flow In Capillary Constrictions, Igor A. Beresnev, William Gaul, R. Dennis Vigil

R. Dennis Vigil

Instability of fluid cylinders and jets, a highly nonlinear hydrodynamic phenomenon, has fascinated researchers for nearly 150 years. A subset of the phenomenon is the core-annular flow, in which a non-wetting core fluid and a surrounding wall-wetting annulus flow through a solid channel. The model, for example, represents the flow of oil in petroleum reservoirs. The flow may be forced to break up when passing through a channel’s constriction. Although it has long been observed that the breakup occurs near the neck of the constriction, the exact conditions for the occurrence of the forced breakup and its dynamic theory have …


A Comparison Of Two Headless Compression Screws For Operative Treatment Of Scaphoid Fractures, Ruby Grewal, Joseph Assini, David Sauder, Louis Ferreira, Jim Johnson, Kenneth Faber Jun 2011

A Comparison Of Two Headless Compression Screws For Operative Treatment Of Scaphoid Fractures, Ruby Grewal, Joseph Assini, David Sauder, Louis Ferreira, Jim Johnson, Kenneth Faber

Surgery Publications

PURPOSE: The purpose of this study was to compare the interfragmentary compression force across a simulated scaphoid fracture by two commonly used compression screw systems; the Acutrak 2 Standard and the 3.0 mm Synthes headless compression screw.

METHODS: Sixteen (8 pairs; 6 female, 2 male) cadaver scaphoids were randomly assigned to receive either the Acutrak 2 or Synthes screw with the contralateral scaphoid designated to receive the opposite. Guide wires were inserted under fluoroscopic control. Following transverse osteotomy, the distal and proximal fragments were placed on either side of a custom load cell, to measure interfragmentary compression. Screws were placed …


Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride Jun 2011

Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride

Materials Engineering

Herein is described the procedure of two amphiphilic polymer wrapping techniques that may be employed for obtaining aqueous soluble quantum dots (QDs) for use in biological fluorescent imaging applications. The advent of QDs has led to new nanoscale fluorescent materials that exhibit unparalleled quantum yields (QYs), high resistance to photobleaching, tunable emissions, and
absorption over a large optical range. However, the QD synthesis employed here at Cal Poly to obtain bright, photostable CdSe(ZnS) core(shell) QDs involves the use of organic solvents and surfactants, leading to hydrophobic QDs. Since all of biology relies on aqueous solubility, this hydrophobicity creates a major …


Characterization And Implementation Of Low Intensity Pulsed Ultrasound As A Tool To Apply Physical Load To Scaffolds And Bone Cells For Fracture Repair, Scott Frazee May 2011

Characterization And Implementation Of Low Intensity Pulsed Ultrasound As A Tool To Apply Physical Load To Scaffolds And Bone Cells For Fracture Repair, Scott Frazee

Master's Theses

One current challenge in treating bone fractures is the effective treatment of non-unions and delayed unions. Low Intensity Pulsed Ultrasound (LIPUS) has been approved by the FDA to treat fresh fractures since 1994 and non-unions since 2000 and is an attractive treatment option because it is non-invasive. The mechanism by which it works, however, is not well understood; what is known is largely confined to the resultant changes in chemical output of cells. In this thesis several concepts and techniques were brought together to investigate the following hypothesis: LIPUS produces a measurable physical load that results in measurable deformation and …


Reinforced Chitosan-Based Heart Valve Scaffold And Utility Of Bone Marrow-Derived Mesenchymal Stem Cells For Cardiovascular Tissue Engineering, Mohammad Z. Albanna Jan 2011

Reinforced Chitosan-Based Heart Valve Scaffold And Utility Of Bone Marrow-Derived Mesenchymal Stem Cells For Cardiovascular Tissue Engineering, Mohammad Z. Albanna

Wayne State University Dissertations

Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on …


Supercritical Carbon Dioxide-Processed Resorbable Polymer Nanocomposites For Bone Graft Substitute Applications, Kevin Baker Jan 2011

Supercritical Carbon Dioxide-Processed Resorbable Polymer Nanocomposites For Bone Graft Substitute Applications, Kevin Baker

Wayne State University Dissertations

Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the …


Electrochemical Investigation Of Chromium Nanocarbide Coated Ti-6al-4v And Co-Cr-Mo Alloy Substrates, Viswanathan Swaminathan, Haitong Zeng, Daniel Lawrynowicz, Zongtao Zhang, Jeremy L. Gilbert Jan 2011

Electrochemical Investigation Of Chromium Nanocarbide Coated Ti-6al-4v And Co-Cr-Mo Alloy Substrates, Viswanathan Swaminathan, Haitong Zeng, Daniel Lawrynowicz, Zongtao Zhang, Jeremy L. Gilbert

Biomedical and Chemical Engineering - All Scholarship

This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H2O2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to …