Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis Aug 2017

Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis

Doctoral Dissertations

Bioelectrochemical systems are an emerging technology capable of utilizing aqueous waste streams generated during biomass conversion of lignocellulosic feedstocks to produce valuable co-products and thus, have potential to be integrated into biorefineries. In a microbial electrolysis cell, organic compounds are converted to electrons, protons, and CO2 by fermentative and exoelectrogenic bacteria in the anode compartment. By having the ability to extract electrons from waste streams, these systems can treat water while also producing hydrogen, and thus can improve the efficiency of biomass to fuel production by minimizing external hydrogen requirement and enabling water recycle. The overall goal of this …


Effect Of Plant Hormones On The Production Of Biomass And Lipid In Microalgae, Malihe Mehdizadeh Allaf Aug 2013

Effect Of Plant Hormones On The Production Of Biomass And Lipid In Microalgae, Malihe Mehdizadeh Allaf

Electronic Thesis and Dissertation Repository

Limited fossil fuel reserves, increasing demand for energy in all parts of the world are some driving forces to look for new sources of transportation fuels. Among different options available, microalgae are currently attracting wide interests as an alternative and renewable fuel source.

Microalgae are single cell photosynthetic organisms that are known for rapid growth and high energy content and as a part of photosynthesis; they produce oil that can be used as a feedstock for biodiesel production. Some algae strains could contain lipid up to 80% of the dry biomass. The amount of lipid production is in direct relation …


Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks Aug 2011

Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks

Dartmouth Scholarship

Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. …