Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Nanosecond Pulsed Electric Signals Can Affect Electrostatic Environment Of Protiens Below The Threshold Of Conformational Effects: The Case Study Of Sod1 With A Molecular Simulation Study, Elena Della Valle, Paolo Marracino, Olga Pakhomova, Micaela Liberti, Francesca Apollonio Jan 2019

Nanosecond Pulsed Electric Signals Can Affect Electrostatic Environment Of Protiens Below The Threshold Of Conformational Effects: The Case Study Of Sod1 With A Molecular Simulation Study, Elena Della Valle, Paolo Marracino, Olga Pakhomova, Micaela Liberti, Francesca Apollonio

Bioelectrics Publications

Electric fields can be a powerful tool to interact with enzymes or proteins, with an intriguing perspective to allow protein manipulation. Recently, researchers have focused the interest on intracellular enzyme modifications triggered by the application of nanosecond pulsed electric fields. These findings were also supported by theoretical predictions from molecular dynamics simulations focussing on significant variations in protein secondary structures. In this work, a theoretical study utilizing molecular dynamics simulations is proposed to explore effects of electric fields of high intensity and very short nanosecond duration applied to the superoxide dismutase (Cu/Zn-SOD or SOD-1), an important enzyme involved in the …


Method For The Destruction Of Endotoxin In Synthetic Spider Silk Proteins, Richard E. Decker, Thomas I. Harris, Dylan R. Memmott, Christopher J. Peterson, Randolph V. Lewis, Justin A. Jones Aug 2018

Method For The Destruction Of Endotoxin In Synthetic Spider Silk Proteins, Richard E. Decker, Thomas I. Harris, Dylan R. Memmott, Christopher J. Peterson, Randolph V. Lewis, Justin A. Jones

Biological Engineering Faculty Publications

Although synthetic spider silk has impressive potential as a biomaterial, endotoxin contamination of the spider silk proteins is a concern, regardless of the production method. The purpose of this research was to establish a standardized method to either remove or destroy the endotoxins present in synthetic spider silk proteins, such that the endotoxin level was consistently equal to or less than 0.25 EU/mL, the FDA limit for similar implant materials. Although dry heat is generally the preferred method for endotoxin destruction, heating the silk proteins to the necessary temperatures led to compromised mechanical properties in the resultant materials. In light …


Cell Permeabilization And Inhibition Of Voltage-Gated Ca²+ And Na+ Channel Currents By Nanosecond Pulsed Electric Fields, Vasyl Nesin, Angela M. Bowman, Shu Xiao, Andrei G. Pakhomov Jan 2012

Cell Permeabilization And Inhibition Of Voltage-Gated Ca²+ And Na+ Channel Currents By Nanosecond Pulsed Electric Fields, Vasyl Nesin, Angela M. Bowman, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Previous studies have found that nanosecond pulsed electric field (nsPEF) exposure causes long-term permeabilization of the cell plasma membrane. In this study, we utilized the whole-cell patch-clamp method to study the nsPEF effect on currents of voltage-gated (VG) Ca2+ and Na+ channels (ICa and INa) in cultured GH3 and NG108 cells. We found that a single 300 or 600 ns pulse at or above 1.5-2 kV/cm caused prolonged inhibition of ICa and INa. Concurrently, nsPEF increased a non-inactivating leak current (Ileak), presumably due to the formation of nanoelectropores or larger …