Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 416

Full-Text Articles in Biomedical Engineering and Bioengineering

Aerobic Exercise Improves Depressive Symptoms In The Unilateral 6-Ohda-Lesioned Rat Model Of Parkinson's Disease, Hannah Loughlin, Jacob Jackson, Chloe Looman, Alayna Starll, Jeremy Goldman, Zhiying Shan, Chunxiu Yu Jun 2024

Aerobic Exercise Improves Depressive Symptoms In The Unilateral 6-Ohda-Lesioned Rat Model Of Parkinson's Disease, Hannah Loughlin, Jacob Jackson, Chloe Looman, Alayna Starll, Jeremy Goldman, Zhiying Shan, Chunxiu Yu

Michigan Tech Publications, Part 2

Aerobic exercise has been shown to have established benefits on motor function in Parkinson's disease (PD). However, the impact of exercise on depressive symptoms in PD remains unclear. This study aimed to investigate the effects of regular exercise, specifically using a forced running wheel, on both motor performance and the prevalence of depression in a unilateral 6-OHDA-lesioned rat model of PD. The behavioral outcomes of exercise were assessed through the rotarod test (RT), forelimb adjusting step test (FAST), sucrose consumption test (SCT), and novelty sucrose splash test (NSST). Our data revealed evident depressive symptoms in the PD animals, characterized by …


Integrated Rules Classifier For Predicting Pathogenic Non-Synonymous Single Nucleotide Variants In Human, Ahmed Barakat Hosseny, Marwa Said Hassan, A A. Shalan, Shymaa Khamis, M I. Dessouky Jan 2024

Integrated Rules Classifier For Predicting Pathogenic Non-Synonymous Single Nucleotide Variants In Human, Ahmed Barakat Hosseny, Marwa Said Hassan, A A. Shalan, Shymaa Khamis, M I. Dessouky

Basic Science Engineering

The most prevalent kind of genetic variants in humans are non-synonymous single nucleotide variants (nsSNVs). Several prediction tools have been launched to forecast the effect of amino acid substitutes on human protein function. These tools sort variants as pathogenic or neutral. We developed an Integrated Rules Classifier (Integration Score through JRip “ISTJRip”), which integrates the four individual tools that are publicly available; iFish, Mutation Assessor, FATHMM, and SIFT-based on the JRip machine learning technique. Additionally, we compared the ISTJRip approach with the other three created integration classifiers; Integration Score through J48 “ISTJ48”, Integration Score through RF “ISTRF”, and Integration …


Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2024

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed atmospheric pressure plasma jets (ns-APPJs) produce reactive plasma species, including charged particles and reactive oxygen and nitrogen species (RONS), which can induce oxidative stress in biological cells. Nanosecond pulsed electric field (nsPEF) has also been found to cause permeabilization of cell membranes and induce apoptosis or cell death. Combining the treatment of ns-APPJ and nsPEF may enhance the effectiveness of cancer cell inactivation with only moderate doses of both treatments. Employing ns-APPJ powered by 9 kV, 200 ns pulses at 2 kHz and 60-nsPEF of 50 kV/cm at 1 Hz, the synergistic effects on pancreatic cancer cells (Pan02) …


Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo Jan 2024

Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo

Electrical & Computer Engineering Faculty Publications

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the …


Methods To Study Activity Dependent Protein Synthesis In Autism Spectrum Disorder, Megan Webb, Karin F K Ejendal, Tamara L. Kinzer-Ursem Jul 2023

Methods To Study Activity Dependent Protein Synthesis In Autism Spectrum Disorder, Megan Webb, Karin F K Ejendal, Tamara L. Kinzer-Ursem

Discovery Undergraduate Interdisciplinary Research Internship

It is estimated by the World Health Organization that 1 in 100 children have autism spectrum disorder (ASD), a condition characterized by neurological differences that may impact a person’s learning or behavior. Clinically, ASD symptoms are alleviated with behavioral or pharmacological therapies, however, not all patients respond to these interventions. Deep brain stimulation (DBS) is a promising treatment of Parkinson’s disease that could also be effective in treating ASD. SynGAP1 is a protein involved in neuronal action that is crucial for regulating synaptic plasticity. Mutations in the SYNGAP1 gene causing haploinsufficiency can result in the manifestation of ASD symptoms. This …


A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea Jul 2023

A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea

Rehabilitation Sciences Faculty Publications

Brain–body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of ‘brain’ activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a …


Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov Jun 2023

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov

Bioelectrics Publications

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …


Multichannel Modulation Of Depolarizing And Repolarizing Ion Currents Increases The Positive Rate-Dependent Action Potential Prolongation, Candido Cabo May 2023

Multichannel Modulation Of Depolarizing And Repolarizing Ion Currents Increases The Positive Rate-Dependent Action Potential Prolongation, Candido Cabo

Publications and Research

Prolongation of the action potential duration (APD) could prevent reentrant arrhythmias if prolongation occurs at the fast excitation rates of tachycardia with minimal prolongation at slow excitation rates (i.e., if prolongation is positive rate-dependent). APD prolongation by current anti-arrhythmic agents is either reverse (larger APD prolongation at slow rates than at fast rates) or neutral (similar APD prolongation at slow and fast rates), which may not result in an effective anti-arrhythmic action. In this report we show that, in computer models of the human ventricular action potential, the combined modulation of both depolarizing and repolarizing ion currents results in a …


Mechanical Properties And Morphological Alterations In Fiber-Based Scaffolds Affecting Tissue Engineering Outcomes, James Dolgin, Samerender Nagam Hanumantharao, Stephen Farias, Carl G. Simon, Smitha Rao Apr 2023

Mechanical Properties And Morphological Alterations In Fiber-Based Scaffolds Affecting Tissue Engineering Outcomes, James Dolgin, Samerender Nagam Hanumantharao, Stephen Farias, Carl G. Simon, Smitha Rao

Michigan Tech Publications

Electrospinning is a versatile tool used to produce highly customizable nonwoven nanofiber mats of various fiber diameters, pore sizes, and alignment. It is possible to create electrospun mats from synthetic polymers, biobased polymers, and combinations thereof. The post-processing of the end products can occur in many ways, such as cross-linking, enzyme linking, and thermal curing, to achieve enhanced chemical and physical properties. Such multi-factor tunability is very promising in applications such as tissue engineering, 3D organs/organoids, and cell differentiation. While the established methods involve the use of soluble small molecules, growth factors, stereolithography, and micro-patterning, electrospinning involves an inexpensive, labor …


Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De Feb 2023

Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De

Engineering Faculty Articles and Research

Colorectal cancer is a life-threatening disease. It is the second leading cause of cancer-related deaths in the United States. Stapled anastomosis is a rapid treatment for colorectal cancer and other intestinal diseases and has become an integral part of routine surgical practice. However, to the best of our knowledge, there is no existing work simulating intestinal anastomosis that often involves sophisticated soft tissue manipulations such as cutting and stitching. In this paper, for the first time, we propose a novel split and join approach to simulate a side-to-side stapled intestinal anastomosis in virtual reality. We mimic the intestine model using …


A Review Of 3d Polymeric Scaffolds For Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, And Challenges, Hassan Nageh, Ahmed G. Abdelaziz, Sara M. Abdo, Mohga S. Abdalla, Asmaa A. Amer, Abdalla Abdal-Hay, Ahmed Barhoum Feb 2023

A Review Of 3d Polymeric Scaffolds For Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, And Challenges, Hassan Nageh, Ahmed G. Abdelaziz, Sara M. Abdo, Mohga S. Abdalla, Asmaa A. Amer, Abdalla Abdal-Hay, Ahmed Barhoum

Nanotechnology Research Centre

Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol–gel techniques. …


Marineepi: A Gui-Based Matlab Toolbox To Simulate Marine Pathogen Transmission, Gorka Bidegain, Tal Ben-Horin, Eric N. Powell, John M. Klinck, Eileen E. Hofmann Jan 2023

Marineepi: A Gui-Based Matlab Toolbox To Simulate Marine Pathogen Transmission, Gorka Bidegain, Tal Ben-Horin, Eric N. Powell, John M. Klinck, Eileen E. Hofmann

CCPO Publications

The Graphical User Interface (GUI) MarineEpi is presented as a Matlab toolbox for easily (i) constructing disease transmission models for different marine host-pathogen systems, (ii) running simulations by specifying initial conditions and model parameters, and (iii) interpreting the resulting time series of the host and pathogen population dynamics. MarineEpi users can generate models for systems in which pathogen transmission occurs through contact with infected individuals (SI), contact with dead infected individuals (SID), contact with environmental pathogens released by infected individuals (SIP), and contact with environmental pathogens released by dead infected individuals (SIPD). MarineEpi is a freely available GUI that provides …


Dataset For Manuscript: Comparing Performance Of Spectral Image Analysis Approaches For Detection Of Cellular Signals In Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy, Silas J. Leavesley Jan 2023

Dataset For Manuscript: Comparing Performance Of Spectral Image Analysis Approaches For Detection Of Cellular Signals In Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy, Silas J. Leavesley

BioImaging and BioSystems Research

The dataset contains raw and processed hyperspectral timelapse image data that are described in the manuscript:

Parker, M., Annamdevula, N. S., Pleshinger, D., Ijaz, Z., Jalkh, J., Penn, R., Deshpande, D., Rich, T. C. & Leavesley, S. J. Comparing Performance of Spectral Image Analysis Approaches for Detection of Cellular Signals in Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy. Bioengineering 10, 642 (2023).


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi Jan 2023

Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi

Michigan Tech Publications, Part 2

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120–240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and …


A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyang Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu Jan 2023

A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyang Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu

Computer Science Faculty Publications

Background

Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis.

Methods

Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate …


Telp Theory: Elucidating The Major Observations Of Rieger Et Al. 2021 In Mitochondria, James Weifu Lee Jan 2023

Telp Theory: Elucidating The Major Observations Of Rieger Et Al. 2021 In Mitochondria, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

The transmembrane-electrostatically localized protons (TELP) theory may represent a complementary development to Mitchell's chemiosmotic theory. The combination of the two together can now excellently explain the energetics in mitochondria. Our calculated transmembrane-attractive force between an excess proton and an excess hydroxide explains how TELP may stay within a 1-nm thin layer at the liquid-membrane interface. Consequently, any pH sensor (sEcGFP) located at least 2–3 nm away from the membrane surface will not be able to see TELP. This feature as predicted from the TELP model was observed exactly in the experiment of Rieger et al., 2021. In contrast to their …


Thermotrophy Exploratory Study, James Weifu Lee Jan 2023

Thermotrophy Exploratory Study, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

The question of whether environmental heat energy could be utilized as a source of energy for biological metabolism is the center of this exploratory research. In 1979, this author postulated a hypothesis for the existence of thermotrophs that could isothermally utilize environmental heat energy as a source of their energy on Earth. According to this hypothesis, the thermotrophs could be the first primitive forms of life in the early Earth environment. The chemotrophs and phototrophs that we currently are all well familiar with might have been evolved somehow from the primitive thermotrophs. Furthermore, all the organisms currently regarded as the …


Advances In 3d Culture Systems For Therapeutic Discovery And Development In Brain Cancer, Janith Wanigasekara, Patrick J. Cullen, Paula Bourke, Brijesh Tiwari, James F. Curtin Nov 2022

Advances In 3d Culture Systems For Therapeutic Discovery And Development In Brain Cancer, Janith Wanigasekara, Patrick J. Cullen, Paula Bourke, Brijesh Tiwari, James F. Curtin

Articles

This review focuses on recent advances in 3D culture systems that promise more accurate therapeutic models of the glioblastoma multiforme (GBM) tumor microenvironment (TME), such as the unique anatomical, cellular, and molecular features evident in human GBM. The key components of a GBM TME are outlined, including microbiomes, vasculature, extracellular matrix (ECM), infiltrating parenchymal and peripheral immune cells and molecules, and chemical gradients. 3D culture systems are evaluated against 2D culture systems and in vivo animal models. The main 3D culture techniques available are compared, with an emphasis on identifying key gaps in knowledge for the development of suitable platforms …


Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma, Guilan Shi, Megan Scott, Cathryn G. Mangiamele, Richard Heller Nov 2022

Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma, Guilan Shi, Megan Scott, Cathryn G. Mangiamele, Richard Heller

Bioelectrics Publications

Resistance to checkpoint-blockade treatments is a challenge in the clinic. Both primary and acquired resistance have become major obstacles, greatly limiting the long-lasting effects and wide application of blockade therapy. Many patients with metastatic melanoma eventually require further therapy. The absence of T-cell infiltration to the tumor site is a well-accepted contributor limiting immune checkpoint inhibitor efficacy. In this study, we combined intratumoral injection of plasmid IL-12 with electrotransfer and anti-PD-1 in metastatic B16F10 melanoma tumor model to increase tumor-infiltrating lymphocytes and improve therapeutic efficacy. We showed that effective anti-tumor responses required a subset of tumor-infiltrating CD8+ and CD4 …


Cellular Bioenergetics: Experimental Evidence For Alcohol-Induced Adaptations, Liz Simon, Patricia E. Molina Aug 2022

Cellular Bioenergetics: Experimental Evidence For Alcohol-Induced Adaptations, Liz Simon, Patricia E. Molina

School of Medicine Faculty Publications

At-risk alcohol use is associated with multisystemic effects and end-organ injury, and significantly contributes to global health burden. Several alcohol-mediated mechanisms have been identified, with bioenergetic maladaptation gaining credence as an underlying pathophysiological mechanism contributing to cellular injury. This evidence-based review focuses on the current knowledge of alcohol-induced bioenergetic adaptations in metabolically active tissues: liver, cardiac and skeletal muscle, pancreas, and brain. Alcohol metabolism itself significantly interferes with bioenergetic pathways in tissues, particularly the liver. Alcohol decreases states of respiration in the electron transport chain, and activity and expression of respiratory complexes, with a net effect to decrease ATP content. …


Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Keratinocyte Cell Migration Due To Contact Exposure, Manas Warke, Laura De March, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao Jul 2022

Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Keratinocyte Cell Migration Due To Contact Exposure, Manas Warke, Laura De March, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao

Michigan Tech Research Data

The scratch wound assay was performed on Human immortalized keratinocytes (HaCaT) cells to observe the effect on cell migration due to contact exposure to arsenic-contaminated Immokalee soil. The cell migration was observed through a microscope for 72 h. HaCaT cells were seeded in 48-well plate. On day 3, treatment media was added (n=8). The cells were treated with four concentrations of soil As (45, 225, 450, and 900 mg/kg) and two controls - Negative control (NC; Pure media) and control (C; 0 mg/kg soil As) for 72 h. A scratch was made using a pipette tip. The wound healing was …


Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Dermal Fibroblasts Cell Migration Due To Contact Exposure, Manas Warke, Laura De Marchi, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao Jul 2022

Using Scratch Wound Assay To Study The Effect Of Soil Arsenic On Human Dermal Fibroblasts Cell Migration Due To Contact Exposure, Manas Warke, Laura De Marchi, Srinivas Kannan, Madeline English, Rohan Sarkar, Rupali Datta, Smitha Rao

Michigan Tech Research Data

The scratch wound assay was performed on Normal Human Primary Dermal Fibroblasts (HDFa) cells to observe the effect on cell migration due to contact exposure to arsenic-contaminated Immokalee soil. The cell migration was observed through a microscope for 72 h. HDFa cells were seeded in 48-well plate. On day 3, treatment media was added (n=8). The cells were treated with four concentrations of soil As (45, 225, 450, and 900 mg/kg) and two controls - Negative control (NC; Pure media) and control (C; 0 mg/kg soil As) for 72 h. A scratch was made using a pipette tip. The wound …


Cellular Mechanisms Underlying State-Dependent Neural Inhibition With Magnetic Stimulation, Hui Ye, Vincent Chiun-Fan Chen, Jenna Hendee Jul 2022

Cellular Mechanisms Underlying State-Dependent Neural Inhibition With Magnetic Stimulation, Hui Ye, Vincent Chiun-Fan Chen, Jenna Hendee

Engineering Science Faculty Publications

Novel stimulation protocols for neuromodulation with magnetic fields are explored in clinical and laboratory settings. Recent evidence suggests that the activation state of the nervous system plays a significant role in the outcome of magnetic stimulation, but the underlying cellular and molecular mechanisms of state-dependency have not been completely investigated. We recently reported that high frequency magnetic stimulation could inhibit neural activity when the neuron was in a low active state. In this paper, we investigate state-dependent neural modulation by applying a magnetic field to single neurons, using the novel micro-coil technology. High frequency magnetic stimulation suppressed single neuron activity …


Electrospray Deposition Of Polyvinylidene Fluoride (Pvdf) Microparticles: Impact Of Solvents And Flow Rate, Akinwunmi Joaquim, Omari Paul, Michael Ibezim, Dewayne Johnson, April Falconer, Ying Wu, Frances Williams, Richard Mu Jul 2022

Electrospray Deposition Of Polyvinylidene Fluoride (Pvdf) Microparticles: Impact Of Solvents And Flow Rate, Akinwunmi Joaquim, Omari Paul, Michael Ibezim, Dewayne Johnson, April Falconer, Ying Wu, Frances Williams, Richard Mu

TIGER Institute Faculty Research

Polymeric microparticles have been shown to have great impacts in the area of drug delivery, biosensing, and tissue engineering. Electrospray technology, which provides a simple yet effective technique in the creation of microparticles, was utilized in this work. In addition, altering the electrospray experimental parameters such as applied voltage, flow rate, collector distance, solvents, and the polymer-solvent mixtures can result in differences in the size and morphology of the produced microparticles. The effects of the flow rate at (0.15, 0.3, 0.45, 0.6, 0.8, and 1 mL/h) and N, N-Dimethylformamide (DMF)/acetone solvent ratios (20:80, 40:60, 60:40, 80:20, 100:0 v/v) in the …


Positive Rate-Dependent Action Potential Prolongation By Modulating Potassium Ion Channels, Candido Cabo Jun 2022

Positive Rate-Dependent Action Potential Prolongation By Modulating Potassium Ion Channels, Candido Cabo

Publications and Research

Pharmacological agents that prolong action potential duration (APD) to a larger extent at slow rates than at the fast excitation rates typical of ventricular tachycardia exhibit reverse rate dependence. Reverse rate dependence has been linked to the lack of efficacy of class III agents at preventing arrhythmias because the doses required to have an anti-arrhythmic effect at fast rates may have pro-arrhythmic effects at slow rates due to an excessive APD prolongation. In this report we show that, in computer models of the ventricular action potential, APD prolongation by accelerating phase 2 repolarization (by increasing IKs) and decelerating …


Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt Jun 2022

Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt

Nebraska Center for Biotechnology: Faculty and Staff Publications

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals—involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs—are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β-heterodimers of the F-actin capping protein (CP) complex. Knockdown of …


Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari May 2022

Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari

Department of Chemical and Biomolecular Engineering: Faculty Publications

Poor ionic conductivity of the catalyst-binding, submicrometer- thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1−2 orders of magnitude higher than Nafion at 20−25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us …


Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya Apr 2022

Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya

Nebraska Center for Biotechnology: Faculty and Staff Publications

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Pathologically, it is characterized by the deposition of amyloid beta (Aβ) plaques and presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation was achieved how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and Alzheimer’s disease (AD) signs and symptoms. Specifically, CeO2 nanoparticles (CeO2NPs) induces free radical scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. In order to investigate, CeO2NPs …