Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Series

2018

Institution
Keyword
Publication

Articles 1 - 30 of 45

Full-Text Articles in Biomedical Engineering and Bioengineering

Manganese-Enhanced Magnetic Resonance Imaging: Overview And Central Nervous System Applications With A Focus On Neurodegeneration, Ryan A. Cloyd, Shon A. Koren, Jose F. Abisambra Dec 2018

Manganese-Enhanced Magnetic Resonance Imaging: Overview And Central Nervous System Applications With A Focus On Neurodegeneration, Ryan A. Cloyd, Shon A. Koren, Jose F. Abisambra

Physiology Faculty Publications

Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and …


Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller Dec 2018

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller

Bioelectrics Publications

Metastatic melanoma is an aggressive skin cancer with a relatively low survival rate. Immune-based therapies have shown promise in the treatment of melanoma, but overall complete response rates are still low. Previous studies have demonstrated the potential of plasmid IL-12 (pIL-12) delivered by gene electrotransfer (GET) to be an effective immunotherapy for melanoma. However, events occurring in the tumor microenvironment following delivery have not been delineated. Therefore, utilizing a B16F10 mouse melanoma model, we evaluated changes in the tumor microenvironment following delivery of pIL-12 using different GET parameters or injection of plasmid alone. The results revealed a unique immune cell …


Modeling In The Physiology Classroom, Sowmya Anjur Nov 2018

Modeling In The Physiology Classroom, Sowmya Anjur

Faculty Publications & Research

Physiology and Disease is a Biology elective at IMSA that has been developed to be mostly student-centered. Some examples of student projects include modeling heart structure to reflect function and creating LED arduino monitors to measure heart rate. Students also measure their lung capacity and blood pressure to demonstrate correlation of these values with heart rate, and trace the correlation back to neuronal controls. Projects such as these integrate other disciplines such as engineering and conform to NGSS Science and Engineering standards and NGSS Cross cutting Concepts standards. Students take responsibility for their own learning and articulate better on tests.


Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan Oct 2018

Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan

Biological Engineering Faculty Publications

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, …


Consistent And Reproducible Cultures Of Large-Scale 3d Mammary Epithelial Structures Using An Accessible Bioprinting Platform, John A. Reid, Peter M. Mollica, Robert D. Bruno, Patrick C. Sachs Oct 2018

Consistent And Reproducible Cultures Of Large-Scale 3d Mammary Epithelial Structures Using An Accessible Bioprinting Platform, John A. Reid, Peter M. Mollica, Robert D. Bruno, Patrick C. Sachs

Medical Diagnostics & Translational Sciences Faculty Publications

Background: Standard three-dimensional (3D) in vitro culture techniques, such as those used for mammary epithelial cells, rely on random distribution of cells within hydrogels. Although these systems offer advantages over traditional 2D models, limitations persist owing to the lack of control over cellular placement within the hydrogel. This results in experimental inconsistencies and random organoid morphology. Robust, high-throughput experimentation requires greater standardization of 3D epithelial culture techniques.

Methods: Here, we detail the use of a 3D bioprinting platform as an investigative tool to control the 3D formation of organoids through the "self-assembly" of human mammary epithelial cells. Experimental bioprinting procedures …


An Efficient Process For Co-Production Of Γ-Aminobutyric Acid And Probiotic Bacillus Subtilis Cells, Hongbo Wang, Jinge Huang, Lei Sun, Fuchao Xu, Wei Zhang, Jixun Zhan Sep 2018

An Efficient Process For Co-Production Of Γ-Aminobutyric Acid And Probiotic Bacillus Subtilis Cells, Hongbo Wang, Jinge Huang, Lei Sun, Fuchao Xu, Wei Zhang, Jixun Zhan

Biological Engineering Faculty Publications

This study was to establish an integrated process for the co-production of γ-aminobutyric acid (GABA) and live probiotics. Six probiotic bacteria were screened and Bacillus subtilis ATCC 6051 showed the highest GABA-producing capacity. The optimal temperature and initial pH value for GABA production in B. subtilis were found to be 30 °C and 8.0, respectively. A variety of carbon and nitrogen sources were tested, and potato starch and peptone were the preferred carbon and nitrogen sources for GABA production, respectively. The concentrations of carbon source, nitrogen source and substrate (sodium L-glutamate) were then optimized using the response surface methodology. The …


Voltage Effects On Muscarinic Acetylcholine Receptor-Mediated Contractions Of Airway Smooth Muscle, Iurii Semenov, Robert Brenner Sep 2018

Voltage Effects On Muscarinic Acetylcholine Receptor-Mediated Contractions Of Airway Smooth Muscle, Iurii Semenov, Robert Brenner

Bioelectrics Publications

Studies have shown that the activity of muscarinic receptors and their affinity to agonists are sensitive to membrane potential. It was reported that in airway smooth muscle (ASM) depolarization evoked by high K+ solution increases contractility through direct effects on M3 muscarinic receptors. In this study, we assessed the physiological relevance of voltage sensitivity of muscarinic receptors on ASM contractility. Our findings reveal that depolarization by high K+ solution induces contraction in intact mouse trachea predominantly through activation of acetylcholine release from embedded nerves, and to a lesser extent by direct effects on M3 receptors. We therefore devised …


Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller Sep 2018

Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller

Bioelectrics Publications

Nanosecond pulse stimulation as a tumor ablation therapy has been studied for the treatment of various carcinomas in animal models and has shown a significant survival benefit. In the current study, we found that moderate heating at 43°C for 2 minutes significantly enhanced in vitro nanosecond pulse stimulation-induced cell death of KLN205 murine squamous cell carcinoma cells by 2.43-fold at 600 V and by 2.32-fold at 900 V, as evidenced by propidium iodide uptake. Furthermore, the ablation zone in KLN205 cells placed in a 3-dimensional cell-culture model and pulsed at a voltage of 900 V at 43°C was 3 times …


Method For The Destruction Of Endotoxin In Synthetic Spider Silk Proteins, Richard E. Decker, Thomas I. Harris, Dylan R. Memmott, Christopher J. Peterson, Randolph V. Lewis, Justin A. Jones Aug 2018

Method For The Destruction Of Endotoxin In Synthetic Spider Silk Proteins, Richard E. Decker, Thomas I. Harris, Dylan R. Memmott, Christopher J. Peterson, Randolph V. Lewis, Justin A. Jones

Biological Engineering Faculty Publications

Although synthetic spider silk has impressive potential as a biomaterial, endotoxin contamination of the spider silk proteins is a concern, regardless of the production method. The purpose of this research was to establish a standardized method to either remove or destroy the endotoxins present in synthetic spider silk proteins, such that the endotoxin level was consistently equal to or less than 0.25 EU/mL, the FDA limit for similar implant materials. Although dry heat is generally the preferred method for endotoxin destruction, heating the silk proteins to the necessary temperatures led to compromised mechanical properties in the resultant materials. In light …


Shipboard Design And Fabrication Of Custom 3d-Printed Soft Robotic Manipulators For The Investigation Of Delicate Deep-Sea Organisms, Daniel M. Vogt, Kaitlyn P. Becker, Brennan T. Phillips, Moritz A. Graule, Randi D. Rotjan, Timothy M. Shank, Erik E. Cordes, Robert J. Wood, David F. Gruber Aug 2018

Shipboard Design And Fabrication Of Custom 3d-Printed Soft Robotic Manipulators For The Investigation Of Delicate Deep-Sea Organisms, Daniel M. Vogt, Kaitlyn P. Becker, Brennan T. Phillips, Moritz A. Graule, Randi D. Rotjan, Timothy M. Shank, Erik E. Cordes, Robert J. Wood, David F. Gruber

Publications and Research

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms. Soft robotics manipulators were tested down to 2224m via a Remotely-Operated Vehicle (ROV) in the Phoenix Islands Protected Area (PIPA) and facilitated the study of a diverse suite of soft-bodied and fragile marine life. Instantaneous feedback from the ROV pilots and biologists allowed for rapid re-design, such as adding ªfingernailsº, …


Antimicrobial Efficacy And Safety Of A Novel Gas Plasma-Activated Catheter Lock Solution, Sudhir Bhatt, Poonam Mehta, Chen Chen, Dayle A. Daines, Leonard A. Mermel, Hai-Lan Chen, Michael G. Kong Aug 2018

Antimicrobial Efficacy And Safety Of A Novel Gas Plasma-Activated Catheter Lock Solution, Sudhir Bhatt, Poonam Mehta, Chen Chen, Dayle A. Daines, Leonard A. Mermel, Hai-Lan Chen, Michael G. Kong

Bioelectrics Publications

Antimicrobial lock solutions are important for prevention of microbial colonization and infection of long-term central venous catheters. We investigated the efficacy and safety of a novel antibiotic-free lock solution formed from gas plasma-activated disinfectant (PAD). Using a luminal biofilm model, viable cells of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans in mature biofilms were reduced by 6 to 8 orders of magnitude with a PAD lock for 60 min. Subsequent 24-h incubation of PAD-treated samples resulted in no detectable regrowth of viable bacteria or fungi. As a comparison, the use of a minocycline-EDTA-ethanol lock solution for 60 …


Neuroimaging Biomarkers Of Mtor Inhibition On Vascular And Metabolic Functions In Aging Brain And Alzheimer’S Disease, Jennifer Lee, Lucille M. Yanckello, David Ma, Jared D. Hoffman, Ishita Parikh, Scott Thalman, Bjoern Bauer, Anika M. S. Hartz, Fahmeed Hyder, Ai-Ling Lin Jul 2018

Neuroimaging Biomarkers Of Mtor Inhibition On Vascular And Metabolic Functions In Aging Brain And Alzheimer’S Disease, Jennifer Lee, Lucille M. Yanckello, David Ma, Jared D. Hoffman, Ishita Parikh, Scott Thalman, Bjoern Bauer, Anika M. S. Hartz, Fahmeed Hyder, Ai-Ling Lin

Pharmacology and Nutritional Sciences Faculty Publications

The mechanistic target of rapamycin (mTOR) is a nutrient sensor of eukaryotic cells. Inhibition of mechanistic mTOR signaling can increase life and health span in various species via interventions that include rapamycin and caloric restriction (CR). In the central nervous system, mTOR inhibition demonstrates neuroprotective patterns in aging and Alzheimer’s disease (AD) by preserving mitochondrial function and reducing amyloid beta retention. However, the effects of mTOR inhibition for in vivo brain physiology remain largely unknown. Here, we review recent findings of in vivo metabolic and vascular measures using non-invasive, multimodal neuroimaging methods in rodent models for brain aging and AD. …


Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah Jul 2018

Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah

Biological Engineering Faculty Publications

Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host–microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In …


Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen Jul 2018

Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen

Department of Chemical and Biomolecular Engineering: Faculty Publications

In this study, heparin-loaded poly-ε-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was …


Wearable Assistive Technologies For Autism: Opportunities And Challenges, Emma Mansouri Benssassi, Juan-Carlos Gomez, Louanne E. Boyd, Gillian R. Hayes, Juan Ye Jun 2018

Wearable Assistive Technologies For Autism: Opportunities And Challenges, Emma Mansouri Benssassi, Juan-Carlos Gomez, Louanne E. Boyd, Gillian R. Hayes, Juan Ye

Engineering Faculty Articles and Research

Autism is a lifelong developmental condition that affects how people perceive the world and interact with others. Challenges with typical social engagement, common in the autism experience, can have a significant negative impact on the quality of life of individuals and families living with autism. Recent advances in sensing, intelligent, and interactive technologies can enable new forms of assistive and augmentative technologies to support social interactions. However, researchers have not yet demonstrated effectiveness of these technologies in long-term real-world use. This article presents an overview of the social and sensory challenges of autism, which offer great opportunities and challenges for …


Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch May 2018

Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch

University Scholar Projects

Recent advances in the field of biomaterials have suggested that cells cultured on substrates resembling the native tissue mechanical properties, matrix and growth factor composition, and topography can adopt phenotypes that more closely resemble the in vivo tissue compared to cells cultured on non-mimetic constructs. Understanding the effect of culture substrate on in vitro tissue formation is important for bioengineering applications that include mechanistic studies of healthy tissue function and development of disease models. In this work, Caco-2 adenocarcinoma cells were seeded on flat and crypt-like topographies of 3D-printed cytocompatible hydrogels derived from silk fibroin protein. Silk hydrogels were selected …


Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch May 2018

Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch

Honors Scholar Theses

Recent advances in the field of biomaterials have suggested that cells cultured on substrates resembling the native tissue mechanical properties, matrix and growth factor composition, and topography can adopt phenotypes that more closely resemble the in vivo tissue compared to cells cultured on non-mimetic constructs. Understanding the effect of culture substrate on in vitro tissue formation is important for bioengineering applications that include mechanistic studies of healthy tissue function and development of disease models. In this work, Caco-2 adenocarcinoma cells were seeded on flat and crypt-like topographies of 3D-printed cytocompatible hydrogels derived from silk fibroin protein. Silk hydrogels were selected …


Algal Biofuel: The Future Of Green Jet Fuel In Air Transportation, Rajee Olaganathan Apr 2018

Algal Biofuel: The Future Of Green Jet Fuel In Air Transportation, Rajee Olaganathan

Publications

The aviation industry is one of the major contributors for the greenhouse gases. As air travel has become inevitable in this modern era, and fossil fuel usage is not sustainable, it is essential to produce renewable fuel and commercialize it to reduce the greenhouse gas emissions. In order to produce an alternate aviation biofuel a lot of industrial and academic collaborations have been developed worldwide. The main concern of this collaborative research is to produce aviation biofuel from renewable resources with low environmental impacts, and which is sustainable at an economically viable price. This mini-review briefly discusses the biotechnological approaches …


Dynamic Classification Of Moisture Stress Using Canopy And Leaf Temperature Responses To A Step Changes Of Incident Radiation, Erin E. Stevens, George E. Meyer, Ellen T. Paparozzi Apr 2018

Dynamic Classification Of Moisture Stress Using Canopy And Leaf Temperature Responses To A Step Changes Of Incident Radiation, Erin E. Stevens, George E. Meyer, Ellen T. Paparozzi

Honors Theses

Environmental conditions affect plant productivity and understanding how plants respond to drought stress can be measured in different ways. This study focused on measuring leaf response time to induced water stress. Leaf response time to a step increase and step decrease in radiation was computed for four species of well-watered and water-stressed plants in a controlled environment. The canopy temperature was measured with an infrared thermometer and a thermal imaging camera. Thermal images were analyzed to determine the average temperature of a selected single, unobstructed leaf at the top of the canopy. Both the canopy response time and the single …


Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He Apr 2018

Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He

Computer Science Faculty Publications

Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin …


A Model-Based Approach For Estimation Of Changes In Lumbar Segmental Kinematics Associated With Alterations In Trunk Muscle Forces, Iman Shojaei, Navid Arjmand, Judith R. Meakin, Babak Bazrgari Mar 2018

A Model-Based Approach For Estimation Of Changes In Lumbar Segmental Kinematics Associated With Alterations In Trunk Muscle Forces, Iman Shojaei, Navid Arjmand, Judith R. Meakin, Babak Bazrgari

Biomedical Engineering Faculty Publications

The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set …


Production Of Genetically Engineered Golden Syrian Hamsters By Pronuclear Injection Of The Crispr/Cas9 Complex, Rong Li, Jinxin Miao, Seokhwan Song, Il-Keun Kong, Yaohe Wang, Zhongde Wang Jan 2018

Production Of Genetically Engineered Golden Syrian Hamsters By Pronuclear Injection Of The Crispr/Cas9 Complex, Rong Li, Jinxin Miao, Seokhwan Song, Il-Keun Kong, Yaohe Wang, Zhongde Wang

Animal, Dairy, and Veterinary Science Faculty Publications

The pronuclear (PN) injection technique was first established in mice to introduce foreign genetic materials into the pronuclei of one-cell stage embryos. The introduced genetic material may integrate into the embryonic genome and generate transgenic animals with foreign genetic information following transfer of the injected embryos to foster mothers. Following the success in mice, PN injection has been applied successfully in many other animal species. Recently, PN injection has been successfully employed to introduce reagents with gene-modifying activities, such as the CRISPR/Cas9 system, to achieve site-specific genetic modifications in several laboratory and farm animal species. In addition to mastering the …


Multiple Factors Drive Variation Of Forest Root Biomass In Southwestern China, Hao Zhang, Kelin Wang, Zhaoxia Zeng, Zhigang Zou, Yanfang Xu, Fuping Zeng Jan 2018

Multiple Factors Drive Variation Of Forest Root Biomass In Southwestern China, Hao Zhang, Kelin Wang, Zhaoxia Zeng, Zhigang Zou, Yanfang Xu, Fuping Zeng

Nebraska Center for Biotechnology: Faculty and Staff Publications

The roots linking the above-ground organs and soil are key components for estimating net primary productivity and carbon sequestration of forests. The patterns and drivers of root biomass in forest have not been examined well at the regional scale, especially for the widely distributed forest ecosystems in southwestern China. We attempted to determine the spatial patterns of root biomass (RB, Mg/ha), annual increment root biomass (AIRB, Mg/ha/year), ratio of root and above-ground (RRA), and the relative contributions of abiotic and biotic factors that drive the variation of root biomass. Forest biomass and multiple factors (climate, soil, forest types, and stand …


Non-Targeted Colonization By The Endomycorrhizal Fungus, Serendipita Vermifera, In Three Weeds Typically Co-Occurring With Switchgrass, Prasun Ray, Yingqing Guo, Jaydeep Kolape Jan 2018

Non-Targeted Colonization By The Endomycorrhizal Fungus, Serendipita Vermifera, In Three Weeds Typically Co-Occurring With Switchgrass, Prasun Ray, Yingqing Guo, Jaydeep Kolape

Nebraska Center for Biotechnology: Faculty and Staff Publications

Serendipita vermifera (=Sebacina vermifera; isolate MAFF305830) is a mycorrhizal fungus originally isolated from the roots of an Australian orchid that we have previously shown to be beneficial in enhancing biomass yield and drought tolerance in switchgrass, an important bioenergy crop for cellulosic ethanol production in the United States. However, almost nothing is known about how this root-associated fungus proliferates and grows through the soil matrix. Such information is critical to evaluate the possibility of non-target effects, such as unintended spread to weedy plants growing near a colonized switchgrass plant in a field environment. A microcosm experiment was conducted …


Inhibition Of Apoptosis Exacerbates Fatigue-Damage Tendon Injuries In An In Vivo Rat Model, R. Bell, M. A. Robles-Harris, M. Anderson, D. Laudier, M. B. Schaffler, E. L. Flatow, N. Andarawis-Puri Jan 2018

Inhibition Of Apoptosis Exacerbates Fatigue-Damage Tendon Injuries In An In Vivo Rat Model, R. Bell, M. A. Robles-Harris, M. Anderson, D. Laudier, M. B. Schaffler, E. L. Flatow, N. Andarawis-Puri

Publications and Research

Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue-damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve …


Objectively Measuring Effects Of Electro-Acupuncture In Parkinsonian Rhesus Monkeys, Rui Zhang, Anders H. Andersen, Peter A. Hardy, Eric Forman, April Evans, Yi Ai, Jin Yue, Guihua Yue, Don M. Gash, Richard Grondin, Zhiming Zhang Jan 2018

Objectively Measuring Effects Of Electro-Acupuncture In Parkinsonian Rhesus Monkeys, Rui Zhang, Anders H. Andersen, Peter A. Hardy, Eric Forman, April Evans, Yi Ai, Jin Yue, Guihua Yue, Don M. Gash, Richard Grondin, Zhiming Zhang

Magnetic Resonance Imaging and Spectroscopy Center Faculty Publications

Acupuncture has increasingly been used as an alternative therapy for treatment of Parkinson’s disease (PD). However, the efficacy of acupunture for PD still remains unclear. The present study was designed to objectively and safely monitor anti-parkinsonian effects of electroacupuncture (EA) and brain activity in nonhuman primates modeling human PD. Six middle-aged rhesus monkeys were extensively studied by a computerized behavioral testing battery and by pharmacological MRI (phMRI) scans with specific dopaminergic drug stimulations. All animals were evaluated for behavior and phMRI responses under normal, parkinsonian, parkinsonian with EA treatment and parkinsonian after EA treatment conditions. Stable parkinsonian features were observed …


Optimization Of Wavelength Selection For Multispectral Image Acquisition: A Case Study Of Atrial Ablation Lesions, Huda Asfour, S. Guan, Narine Muselimyan, Luther M. Swift, Murray Loew, Narine Sarvazyan Jan 2018

Optimization Of Wavelength Selection For Multispectral Image Acquisition: A Case Study Of Atrial Ablation Lesions, Huda Asfour, S. Guan, Narine Muselimyan, Luther M. Swift, Murray Loew, Narine Sarvazyan

Pharmacology and Physiology Faculty Publications

In vivo autofluorescence hyperspectral imaging of moving objects can be challenging due to motion artifacts and to the limited amount of acquired photons. To address both limitations, we selectively reduced the number of spectral bands while maintaining accurate target identification. Several downsampling approaches were applied to data obtained from the atrial tissue of adult pigs with sites of radiofrequency ablation lesions. Standard image qualifiers such as the mean square error, the peak signal-to-noise ratio, the structural similarity index map, and an accuracy index of lesion component images were used to quantify the effects of spectral binning, an increased spectral distance …


Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll Jan 2018

Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll

Publications and Research

Back and neck pain are commonly associated with intervertebral disc (IVD) degeneration. Structural augmentation of diseased nucleus pulposus (NP) tissue with biomaterials could restore degeneration-related IVD height loss and degraded biomechanical behaviors; however, effective NP replacement biomaterials are not commercially available. This study developed a novel, crosslinked, dual-polymer network (DPN) hydrogel comprised of methacrylated carboxymethylcellulose (CMC) and methylcellulose (MC), and used in vitro, in situ and in vivo testing to assess its efficacy as an injectable, in situ gelling, biocompatible material that matches native NP properties and restores IVD biomechanical behaviors. Thermogelling MC was required to enable consistent and timely …


Analytical Cpg Model Driven By Limb Velocity Input Generates Accurate Temporal Locomotor Dynamics, Sergiy Yakovenko, Anton Sobinov, Valeriya Gritsenko Jan 2018

Analytical Cpg Model Driven By Limb Velocity Input Generates Accurate Temporal Locomotor Dynamics, Sergiy Yakovenko, Anton Sobinov, Valeriya Gritsenko

Faculty & Staff Scholarship

The ability of vertebrates to generate rhythm within their spinal neural networks is essential for walking, running, and other rhythmic behaviors. The central pattern generator (CPG) network responsible for these behaviors is well-characterized with experimental and theoretical studies, and it can be formulated as a nonlinear dynam- ical system. The underlying mechanism responsible for locomotor behavior can be expressed as the process of leaky integration with resetting states generating appropriate phases for changing body velocity. The low-dimensional input to the CPG model generates the bilateral pattern of swing and stance modulation for each limb and is consistent with the desired …


Enhanced Hot Electron Lifetimes In Quantum Wells With Inhibited Phonon Coupling, Hamidreza Esmaielpour, Vincent R. Whiteside, Herath P. Piyathilaka, Sangeetha Vijeyaragunathan, Bin Wang, Echo Adcock-Smith, Kenneth P. Roberts, Tetsuya D. Mishima, Michael B. Santos, Alan D. Bristow, Ian R. Sellers Jan 2018

Enhanced Hot Electron Lifetimes In Quantum Wells With Inhibited Phonon Coupling, Hamidreza Esmaielpour, Vincent R. Whiteside, Herath P. Piyathilaka, Sangeetha Vijeyaragunathan, Bin Wang, Echo Adcock-Smith, Kenneth P. Roberts, Tetsuya D. Mishima, Michael B. Santos, Alan D. Bristow, Ian R. Sellers

Faculty & Staff Scholarship

Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to …