Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Energy-Landscape-Model Analysis For Irreversibility And Its Pulse-Width Dependence In Cells Subjected To A High-Intensity Ultrashort Electric Pulse, R. P. Joshi, Q. Hu, Karl H. Schoenbach, Stephen J. Beebe Jul 2004

Energy-Landscape-Model Analysis For Irreversibility And Its Pulse-Width Dependence In Cells Subjected To A High-Intensity Ultrashort Electric Pulse, R. P. Joshi, Q. Hu, Karl H. Schoenbach, Stephen J. Beebe

Bioelectrics Publications

We provide a simple, but physical analysis for cell irreversibility and apoptosis in response to an ultrashort (nanosecond), high-intensity electric pulse. Our approach is based on an energy landscape model for determining the temporal evolution of the configurational probability function p(q). The primary focus is on obtaining qualitative predictions of a pulse width dependence to apoptotic cell irreversibility that has been observed experimentally. The analysis couples a distributed electrical model for current flow with the Smoluchowski equation to provide self-consistent, time-dependent transmembrane voltages. The model captures the essence of the experimentally observed pulse-width dependence, and provides a possible physical picture …


Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt Jan 2004

Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt

Mechanical and Aerospace Engineering Faculty Publications

In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under …


Stimulation Of Capacitative Calcium Entry In Hl-60 Cells By Nanosecond Pulsed Electric Fields, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Stephen J. Beebe Jan 2004

Stimulation Of Capacitative Calcium Entry In Hl-60 Cells By Nanosecond Pulsed Electric Fields, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Stephen J. Beebe

Bioelectrics Publications

Nanosecond pulsed electric fields (nsPEFs) are hypothesized to affect intracellular structures in living cells providing a new means to modulate cell signal transduction mechanisms. The effects of nsPEFs on the release of internal calcium and activation of calcium influx in HL-60 cells were investigated by using real time fluorescent microscopy with Fluo-3 and fluorometry with Fura-2. nsPEFs induced an increase in intracellular calcium levels that was seen in all cells. With pulses of 60 ns duration and electric fields between 4 and 15 kV/cm, intracellular calcium increased 200-700 nM, respectively, above basal levels (similar to100 nM), while the uptake of …