Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Series

PDF

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 413

Full-Text Articles in Biomedical Engineering and Bioengineering

Therapeutic Treatment With The Anti-Inflammatory Drug Candidate Mw151 May Partially Reduce Memory Impairment And Normalizes Hippocampal Metabolic Markers In A Mouse Model Of Comorbid Amyloid And Vascular Pathology, David J. Braun, David K. Powell, Christopher J. Mclouth, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik Jan 2022

Therapeutic Treatment With The Anti-Inflammatory Drug Candidate Mw151 May Partially Reduce Memory Impairment And Normalizes Hippocampal Metabolic Markers In A Mouse Model Of Comorbid Amyloid And Vascular Pathology, David J. Braun, David K. Powell, Christopher J. Mclouth, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik

Neuroscience Faculty Publications

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, but therapeutic options are lacking. Despite long being able to effectively treat the ill-effects of pathology present in various rodent models of AD, translation of these strategies to the clinic has so far been disappointing. One potential contributor to this situation is the fact that the vast majority of AD patients have other dementia-contributing comorbid pathologies, the most common of which are vascular in nature. This situation is modeled relatively infrequently in basic AD research, and almost never in preclinical studies. As part of our efforts to develop …


Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya Jan 2022

Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya

Publications and Research

Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson’s disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD.

Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms.

Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were …


Glycocalyx Mechanotransduction Mechanisms Are Involved In Renal Cancer Metastasis, Heriberto Moran, Limary M. Cancel, Peigen Huang, Sylvie Roberge, Tuoye Xu, John M. Tarbell, Lance L. Munn Jan 2022

Glycocalyx Mechanotransduction Mechanisms Are Involved In Renal Cancer Metastasis, Heriberto Moran, Limary M. Cancel, Peigen Huang, Sylvie Roberge, Tuoye Xu, John M. Tarbell, Lance L. Munn

Publications and Research

Mammalian cells, including cancer cells, are covered by a surface layer containing cell bound proteoglycans, glycoproteins, associated glycosaminoglycans and bound proteins that is commonly referred to as the glycocalyx. Solid tumors also have a dynamic fluid microenvironment with elevated interstitial flow. In the present work we further investigate the hypothesis that interstitial flow is sensed by the tumor glycocalyx leading to activation of cell motility and metastasis. Using a highly metastatic renal carcinoma cell line (SN12L1) and its low metastatic counterpart (SN12C) we demonstrate in vitro that the small molecule Suberoylanilide Hydroxamic Acid (SAHA) inhibits the heparan sulfate synthesis enzyme …


Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative Jan 2022

Toward A Multimodal Computer-Aided Diagnostic Tool For Alzheimer’S Disease Conversion, Danilo Pena, Jessika Suescun, Mya Schiess, Timothy M. Ellmore, Luca Giancardo, Alzheimer’S Disease Neuroimaging Initiative

Publications and Research

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is one of the leading sources of morbidity and mortality in the aging population AD cardinal symptoms include memory and executive function impairment that profoundly alters a patient’s ability to perform activities of daily living. People with mild cognitive impairment (MCI) exhibit many of the early clinical symptoms of patients with AD and have a high chance of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and brain magnetic resonance imaging (MRI). Many groups are working to help automate this process to improve the clinical workflow. Current …


Genome Structure And Evolutionary History Of Frankincense Producing Boswellia Sacra, Abdul Latif Khan, Ahmed Al-Harrasi, Jin-Peng Wang, Sajjad Asaf, Jean-Jack Riethoven, Tariq Shehzad, Chia-Sin Liew, Xiao-Ming Song, Daniel P. Schachtman, Chao Liu, Ji-Gao Yu, Zhi-Kang Zhang, Fan-Bo Meng, Jia-Qing Yuan, Chen-Dan Wei, He Guo, Xuewen Wang, Ahmed Al-Rawahi, In-Jung Lee, Jeffrey L. Bennetzen, Xi-Yin Wang Jan 2022

Genome Structure And Evolutionary History Of Frankincense Producing Boswellia Sacra, Abdul Latif Khan, Ahmed Al-Harrasi, Jin-Peng Wang, Sajjad Asaf, Jean-Jack Riethoven, Tariq Shehzad, Chia-Sin Liew, Xiao-Ming Song, Daniel P. Schachtman, Chao Liu, Ji-Gao Yu, Zhi-Kang Zhang, Fan-Bo Meng, Jia-Qing Yuan, Chen-Dan Wei, He Guo, Xuewen Wang, Ahmed Al-Rawahi, In-Jung Lee, Jeffrey L. Bennetzen, Xi-Yin Wang

Nebraska Center for Biotechnology: Faculty and Staff Publications

Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype—dominating most resin-productive trees. Further, the stemtranscriptome revealed that wounding concurrently activates phytohormones signaling, …


Characterizing Isoform Switching Events In Esophageal Adenocarcinoma, Yun Zhang, Katherine M. Weh, Connor L. Howard, Jean-Jack Riethoven, Jennifer L. Clarke, Kiran H. Lagisetty, Jules Lin, Rishindra M. Reddy, Andrew C. Chang, David G. Beer, Laura A. Kresty Jan 2022

Characterizing Isoform Switching Events In Esophageal Adenocarcinoma, Yun Zhang, Katherine M. Weh, Connor L. Howard, Jean-Jack Riethoven, Jennifer L. Clarke, Kiran H. Lagisetty, Jules Lin, Rishindra M. Reddy, Andrew C. Chang, David G. Beer, Laura A. Kresty

Nebraska Center for Biotechnology: Faculty and Staff Publications

Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment- naïve esophageal tissues ranging from premalignant Barrett’s esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification …


Vision And Radar Steering Reduces Agricultural Sprayer Operator Stress Without Compromising Steering Performance, Travis A. Burgers, Kelly J. Vanderwerff Jan 2022

Vision And Radar Steering Reduces Agricultural Sprayer Operator Stress Without Compromising Steering Performance, Travis A. Burgers, Kelly J. Vanderwerff

Mechanical Engineering Faculty Publications

Self-propelled agricultural sprayer operators work an average of 15 h d-1 in peak season, and steering is the task that causes the operator the most stress because of the large number of stimuli involved. Automatic guidance systems help reduce stress and fatigue for operators by allowing them to focus on tasks other than steering. Physiological signals like skin conductance (electrodermal activity, EDA) change with stress and can be used to identify stressful events. The objective of this study was to determine if using a commercially available vision and radar guidance system (VSN®, Raven Industries) reduces agricultural sprayer operators’ stress …


Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov Jan 2022

Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov

Bioelectrics Publications

Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns–1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2–4 h, dead cells were labeled with propidium. Electroporation and …


The Third International Hackathon For Applying Insights Into Large-Scale Genomic Composition To Use Cases In A Wide Range Of Organisms, Kimberly Walker, Divya Kalra, Rebecca Lowdon, Guangyi Chen, Fritz J. Sedlazeck, Ben Busby, Chia-Sin Liew, Et Al. Jan 2022

The Third International Hackathon For Applying Insights Into Large-Scale Genomic Composition To Use Cases In A Wide Range Of Organisms, Kimberly Walker, Divya Kalra, Rebecca Lowdon, Guangyi Chen, Fritz J. Sedlazeck, Ben Busby, Chia-Sin Liew, Et Al.

Nebraska Center for Biotechnology: Faculty and Staff Publications

In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.


In Vivo Metabolic Analysis Of The Anticancer Effects Of Plasma-Activated Saline In Three Tumor Animal Models, Miao Qi, Dehui Xu, Shuai Wang, Bing Li, Sansan Peng, Qiaosong Li, Hao Zhang, Runze Fan, Hai-Lan Chen, Michael G. Kong Jan 2022

In Vivo Metabolic Analysis Of The Anticancer Effects Of Plasma-Activated Saline In Three Tumor Animal Models, Miao Qi, Dehui Xu, Shuai Wang, Bing Li, Sansan Peng, Qiaosong Li, Hao Zhang, Runze Fan, Hai-Lan Chen, Michael G. Kong

Bioelectrics Publications

In recent years, the emerging technology of cold atmospheric pressure plasma (CAP) has grown rapidly along with the many medical applications of cold plasma (e.g., cancer, skin disease, tissue repair, etc.). Plasma-activated liquids (e.g., culture media, water, or normal saline, previously exposed to plasma) are being studied as cancer treatments, and due to their advantages, many researchers prefer plasma-activated liquids as an alternative to CAP in the treatment of cancer. In this study, we showed that plasma-activated-saline (PAS) treatment significantly inhibited tumor growth, as compared with saline, in melanoma, and a low-pH environment had little effect on tumor growth in …


Alkaline Plasma-Activated Water (Paw) As An Innovative Therapeutic Avenue For Cancer Treatment, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Miao Qi, Dehui Xu, Renwu Zhou, Dingxin Liu, Michael G. Kong Jan 2022

Alkaline Plasma-Activated Water (Paw) As An Innovative Therapeutic Avenue For Cancer Treatment, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Miao Qi, Dehui Xu, Renwu Zhou, Dingxin Liu, Michael G. Kong

Bioelectrics Publications

Plasma-activated water (PAW) is considered to be an effective anticancer agent due to the diverse aqueous reactive oxygen and nitrogen species (RONS: ROS and RNS), but the drawback of low dose and short duration of RONS in acidified PAW limits their clinical application. Herein, this Letter presents an innovative therapeutic avenue for cancer treatment with highly-effective alkaline PAW prepared by air surface plasma. This anticancer alkaline formulation is comprised of a rich mixture of highly chemical RONS and exhibited a prolonged half-life compared to acidified PAW. The H2O2, NO2-, and ONOO-/O2 …


Type-B Energetic Processes And Their Associated Scientific Implications, James Weifu Lee Jan 2022

Type-B Energetic Processes And Their Associated Scientific Implications, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Recently, our work has identified two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type-A energy processes such as the classical heat engines, ATP hydrolysis, and many of the known chemical, electrical, and mechanical processes apparently follow well the second law of thermodynamics; Type-B energy processes, for example, the newly discovered thermotropic function that isothermally utilizes environmental heat energy to do useful work in driving ATP synthesis, follow the first law of thermodynamics (conservation of mass and energy) but do not have to be constrained by the second law, owing to its special asymmetric functions. …


Inter-Subject Correlation While Listening To Minimalist Music: A Study Of Electrophysiological And Behavioral Responses To Steve Reich’S Piano Phase, Tysen Dauer, Duc T. Nguyen, Nick Gang, Jacek P. Dmochowski, Jonathan Berger, Blair Kaneshiro Dec 2021

Inter-Subject Correlation While Listening To Minimalist Music: A Study Of Electrophysiological And Behavioral Responses To Steve Reich’S Piano Phase, Tysen Dauer, Duc T. Nguyen, Nick Gang, Jacek P. Dmochowski, Jonathan Berger, Blair Kaneshiro

Publications and Research

Musical minimalism utilizes the temporal manipulation of restricted collections of rhythmic, melodic, and/or harmonic materials. One example, Steve Reich’s Piano Phase, offers listeners readily audible formal structure with unpredictable events at the local level. For example, pattern recurrences may generate strong expectations which are violated by small temporal and pitch deviations. A hyper-detailed listening strategy prompted by these minute deviations stands in contrast to the type of listening engagement typically cultivated around functional tonal Western music. Recent research has suggested that the inter-subject correlation (ISC) of electroencephalographic (EEG) responses to natural audio-visual stimuli objectively indexes a state of “engagement,” demonstrating …


Novel Approaches For Enhancing Cell Survival And Function In Vivo, Ou Wang Dec 2021

Novel Approaches For Enhancing Cell Survival And Function In Vivo, Ou Wang

Department of Chemical and Biomolecular Engineering: Theses and Student Research

FDA has approved several cell-based therapeutics and hundreds of cell therapy clinical trials are ongoing. Cells will be a significant type of medicine after small molecule and protein drugs. However, several obstacles need to be addressed to achieve the widespread use of cellular therapeutics. The first challenge is the low efficacy of cell transplantation due to low retention, survival, integration, and function of cells in vivo. The second challenge is producing a massive number of cells for clinical treatment with cost-effectively and reproducibly technologies.

In this thesis, we proposed and investigated two approaches to address these challenges. To begin …


Computational Simulation Of The Lung Doses Of Air-Borne Fine And Ultrafine Particles Inhaled By Humans At Industrial Workplaces, Mohammed Ali Nov 2021

Computational Simulation Of The Lung Doses Of Air-Borne Fine And Ultrafine Particles Inhaled By Humans At Industrial Workplaces, Mohammed Ali

Technology Faculty Publications and Presentations

This study correlates computational predictions with in-vivo experimental results of inhaled fine and ultrafine particulate matters (PMs) transport, dissemination, and deposition in the human respiratory airways. Epidemiological studies suggest that workplace exposure of anthropogenic pollutant PMs as a risk factor for increased susceptibility to acute broncho-pulmonary infections. However, investigations on detailed human inhalation and PM transport processes are restrictive from time, cost, and ethical perspectives. To overcome this problem, computational simulation of particle deposition based on the Multiple Path Particle Dosimetry (MPPD) model was employed. Here, the physical, mechanical, and electrical properties of PMs of carbon black and nanoparticles from …


Phenolic, Carotenoid And Saccharide Compositions Of Vietnamese Camellia Sinensis Teas And Herbal Teas, Danh C. Vu, Sophie Alvarez Oct 2021

Phenolic, Carotenoid And Saccharide Compositions Of Vietnamese Camellia Sinensis Teas And Herbal Teas, Danh C. Vu, Sophie Alvarez

Nebraska Center for Biotechnology: Faculty and Staff Publications

Tea (Camellia sinensis) and herbal tea have been recognized as rich sources of bioactive constituents with the ability to exert antioxidant actions. The aims of this study were to analyze phenolic, carotenoid and saccharide contents in a set of Vietnamese tea and herbal tea and compare the results with those of green and black teas marketed in the U.S. In total, 27 phenolics, six carotenoids and chlorophylls, and three saccharides were quantitatively identified. Catechins, quercetin glycosides and chlorogenic acid were the predominating phenolics in the teas, with the concentrations following the order: jasmine/green teas > oolong tea > black tea. …


Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller Oct 2021

Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller

Sanders-Brown Center on Aging Faculty Publications

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the …


Defining The Innate Immune Responses For Sars-Cov-2-Human Macrophage Interactions, Mai M. Abdelmoaty, Pravin Yeapuri, Jatin Machhi, Katherine E. Olson, Farah Shahjin, Vikas Kumar, You Zhou, Jingjing Liang, Kabita Pandey, Arpan Acharya, Siddappa N. Byrareddy, R. Lee Mosley, Howard E. Gendelman Oct 2021

Defining The Innate Immune Responses For Sars-Cov-2-Human Macrophage Interactions, Mai M. Abdelmoaty, Pravin Yeapuri, Jatin Machhi, Katherine E. Olson, Farah Shahjin, Vikas Kumar, You Zhou, Jingjing Liang, Kabita Pandey, Arpan Acharya, Siddappa N. Byrareddy, R. Lee Mosley, Howard E. Gendelman

Nebraska Center for Biotechnology: Faculty and Staff Publications

Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end-organ malfunctions. All follow the presence of persistent viral components and virions without evidence of viral replication. To elucidate SARS-CoV- 2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the …


Physiological Processes, Chirag B. Raval Oct 2021

Physiological Processes, Chirag B. Raval

Open Educational Resources

Physiological Processes is designed to introduce fundamental concepts of physiology to biomedical engineering learners. Areas covered include: neural, muscular, cardiovascular, respiratory and renal system function; bioelectrical signals, capillary-level transport, organ-level exchange. Whenever possible, analysis will be quantitative in order to fulfill the course goals and to build the foundation for the subsequent biomedical engineering curriculum. This course is for Biomedical Engineering majors only.


During Natural Viewing, Neural Processing Of Visual Targets Continues Throughout Saccades, Atanas D. Stankov, Jonathan Touryan, Stephen Gordon, Anthony J. Ries, Jason Ki, Lucas C. Parra Sep 2021

During Natural Viewing, Neural Processing Of Visual Targets Continues Throughout Saccades, Atanas D. Stankov, Jonathan Touryan, Stephen Gordon, Anthony J. Ries, Jason Ki, Lucas C. Parra

Publications and Research

Relatively little is known about visual processing during free-viewing visual search in realistic dynamic environments. Free-viewing is characterized by frequent saccades. During saccades, visual processing is thought to be suppressed, yet we know that the presaccadic visual content can modulate postsaccadic processing. To better understand these processes in a realistic setting, we study here saccades and neural responses elicited by the appearance of visual targets in a realistic virtual environment. While subjects were being driven through a 3D virtual town, they were asked to discriminate between targets that appear on the road. Using a system identification approach, we separated overlapping …


Bone Quality And Fractures In Women With Osteoporosis Treated With Bisphosphonates For 1 To 14 Years, Hartmut H. Malluche, Jin Chen, Florence Lima, Lucas J. Liu, Marie-Claude Monier-Faugere, David A. Pienkowski Sep 2021

Bone Quality And Fractures In Women With Osteoporosis Treated With Bisphosphonates For 1 To 14 Years, Hartmut H. Malluche, Jin Chen, Florence Lima, Lucas J. Liu, Marie-Claude Monier-Faugere, David A. Pienkowski

Internal Medicine Faculty Publications

Oral bisphosphonates are the primary medication for osteoporosis, but concerns exist regarding potential bone-quality changes or low-energy fractures. This cross-sectional study used artificial intelligence methods to analyze relationships among bisphosphonate treatment duration, a wide variety of bone-quality parameters, and low-energy fractures. Fourier transform infrared spectroscopy and histomorphometry quantified bone-quality parameters in 67 osteoporotic women treated with oral bisphosphonates for 1 to 14 years. Artificial intelligence methods established two models relating bisphosphonate treatment duration to bone-quality changes and to low-energy clinical fractures. The model relating bisphosphonate treatment duration to bone quality demonstrated optimal performance when treatment durations of 1 to 8 …


In Situ Imaging Of Bacterial Outer Membrane Projections And Associated Protein Complexes Using Electron Cryo-Tomography, Mohammed Kaplan, Georges Chreifi, Lauren Ann Metskas, Janine Liedtke, Cecily R. Wood, Catherine M. Oikonomou, William J. Nicolas, Poorna Subramanian, Lori A. Zacharoff, Yuhang Wang, Yi-Wei Chang, Morgan Beeby, Megan J. Dobro, Yongtao Zhu, Mark J. Mcbride, Ariane Briegel, Carrie L. Shaffer, Grant J. Jensen Sep 2021

In Situ Imaging Of Bacterial Outer Membrane Projections And Associated Protein Complexes Using Electron Cryo-Tomography, Mohammed Kaplan, Georges Chreifi, Lauren Ann Metskas, Janine Liedtke, Cecily R. Wood, Catherine M. Oikonomou, William J. Nicolas, Poorna Subramanian, Lori A. Zacharoff, Yuhang Wang, Yi-Wei Chang, Morgan Beeby, Megan J. Dobro, Yongtao Zhu, Mark J. Mcbride, Ariane Briegel, Carrie L. Shaffer, Grant J. Jensen

Veterinary Science Faculty Publications

The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs …


Dimensionality Reduction For Classification Of Object Weight From Electromyography, Elnaz Lashgari, Uri Maoz Aug 2021

Dimensionality Reduction For Classification Of Object Weight From Electromyography, Elnaz Lashgari, Uri Maoz

Psychology Faculty Articles and Research

Electromyography (EMG) is a simple, non-invasive, and cost-effective technology for measuring muscle activity. However, multi-muscle EMG is also a noisy, complex, and high-dimensional signal. It has nevertheless been widely used in a host of human-machine-interface applications (electrical wheelchairs, virtual computer mice, prosthesis, robotic fingers, etc.) and, in particular, to measure the reach-and-grasp motions of the human hand. Here, we developed an automated pipeline to predict object weight in a reach-grasp-lift task from an open dataset, relying only on EMG data. In doing so, we shifted the focus from manual feature-engineering to automated feature-extraction by using pre-processed EMG signals and thus …


A Systematic Review And Meta-Analysis On The Efficacy Of Stem Cell Therapy On Bone Brittleness In Mouse Models Of Osteogenesis Imperfecta, Lauren Battle, Shoshana Yakar, Alessandra Carriero Jul 2021

A Systematic Review And Meta-Analysis On The Efficacy Of Stem Cell Therapy On Bone Brittleness In Mouse Models Of Osteogenesis Imperfecta, Lauren Battle, Shoshana Yakar, Alessandra Carriero

Publications and Research

There is no cure for osteogenesis imperfecta (OI), and current treatments can only partially correct the bone phenotype. Stem cell therapy holds potential to improve bone quality and quantity in OI. Here, we conduct a systematic review and meta-analysis of published studies to investigate the efficacy of stem cell therapy to rescue bone brittleness in mouse models of OI. Identified studies included bone marrow, mesenchymal stem cells, and human fetal stem cells. Effect size of fracture incidence, maximum load, stiffness, cortical thickness, bone volume fraction, and raw engraftment rates were pooled in a random-effects meta-analysis. Cell type, cell number, injection …


Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano Jul 2021

Acute Effect Of High‑Definition And Conventional Tdcs On Exercise Performance And Psychophysiological Responses In Endurance Athletes: A Randomized Controlled Trial, Daniel Gomes Da Silva Machado, Marom Bikson, Abhishek Datta, Egas Caparelli‑Dáquer, Gozde Unal, Abrahão F. Baptista, Edilson Serpeloni Cyrino, Li Min Li, Edgard Morya, Alexandre Moreira, Alexandre Hideki Okano

Publications and Research

Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called “conventional” tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg− 1 min− …


Rapid Microscopic Fractional Anisotropy Imaging Via An Optimized Linear Regression Formulation., N J J Arezza, D H Y Tse, C A Baron Jul 2021

Rapid Microscopic Fractional Anisotropy Imaging Via An Optimized Linear Regression Formulation., N J J Arezza, D H Y Tse, C A Baron

Medical Biophysics Publications

Water diffusion anisotropy in the human brain is affected by disease, trauma, and development. Microscopic fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can quantify water diffusion anisotropy independent of neuron fiber orientation dispersion. However, there are several different techniques to estimate μFA and few have demonstrated full brain imaging capabilities within clinically viable scan times and resolutions. Here, we present an optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd order cumulant expansion of the powder averaged dMRI signal obtained from direct linear regression (i.e. diffusion kurtosis) which requires fewer powder-averaged signals than …


Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye Jun 2021

Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the …


Hypertrophic Cardiomyopathy Β-Cardiac Myosin Mutation (P710r) Leads To Hypercontractility By Disrupting Super Relaxed State, Alison Schroer Vander Roest, Chao Liu, Makenna M. Morck, Kristina Bezold Kooiker, Gwanghyun Jung, Dan Song, Aminah Dawood, Arnav Jhingran, Gaspard Pardon, Sara Ranjbarvaziri, Giovanni Fajardo, Mingming Zhao, Kenneth S. Campbell, Beth L. Pruitt, James A. Spudich, Kathleen M. Ruppel, Daniel Bernstein Jun 2021

Hypertrophic Cardiomyopathy Β-Cardiac Myosin Mutation (P710r) Leads To Hypercontractility By Disrupting Super Relaxed State, Alison Schroer Vander Roest, Chao Liu, Makenna M. Morck, Kristina Bezold Kooiker, Gwanghyun Jung, Dan Song, Aminah Dawood, Arnav Jhingran, Gaspard Pardon, Sara Ranjbarvaziri, Giovanni Fajardo, Mingming Zhao, Kenneth S. Campbell, Beth L. Pruitt, James A. Spudich, Kathleen M. Ruppel, Daniel Bernstein

Physiology Faculty Publications

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in β-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed …


Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco Jun 2021

Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco

ENGS 88 Honors Thesis (AB Students)

Infections are responsible for over half a million neonatal deaths every year (Lawn et al., 2014). Thus, there is huge interest in leveraging maternal immunization against infectious diseases to grant fetal protection during its development through the vertical transferring of IgG antibodies, the only Ig subclass that can significantly cross the placental barrier. Studies about vertical immunization rely on in-vitro models to extrapolate physiological conditions of the human placenta. The BeWo Transwell model (Bode et al., 2006) presents itself as a reliable model to mimic the transplacental transport mechanism of antibodies (Ellinger et al., 1999; Poulsen et al., 2009) …


Flash Radiotherapy: Skin Pigmentation As A Non-Invasive Indicator For Radiation-Induced Damage, Brady Mccallister Jun 2021

Flash Radiotherapy: Skin Pigmentation As A Non-Invasive Indicator For Radiation-Induced Damage, Brady Mccallister

ENGS 88 Honors Thesis (AB Students)

FLASH ultra-high dose rate radiotherapy (RT) is one of the most rapidly growing subfields of radiation oncology today due to its potential to increase the limits of the therapeutic ratio. The FLASH effect, which includes heightened normal tissue sparing paired with iso-effective tumor cell killing, has been literature documented, in a limited manner, in rodent models, a few large animals, and one clinical patients.

A porcine-based experiment was conducted to test the effects of FLASH RT on normal tissue compared to conventional (CONV) RT. A clinical linear accelerator (LINAC) was reversibly converted to be capable of FLASH RT. A female …