Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 91 - 120 of 139

Full-Text Articles in Biomedical Engineering and Bioengineering

Instrumentation And Development Of A Mass Spectrometry System For The Study Of Gas-Phase Biomolecular Ion Reactions, Ziqing Lin Jan 2015

Instrumentation And Development Of A Mass Spectrometry System For The Study Of Gas-Phase Biomolecular Ion Reactions, Ziqing Lin

Open Access Dissertations

Gas-phase reactions of biomolecular ions are highly relevant to the understanding of structures and functions of the biomolecules. Mass spectrometry is a powerful tool in investigating gas-phase ion chemistry. Various mass spectrometers have been developed to explore ion/molecule reactions, ion/ion reactions, ion/photon reactions, ion/radical reactions etc., both at atmospheric pressure and in vacuum. In-vacuum reactions have an advantage of involving pre-selecting the ions for the reactions using a mass analyzer. Over the decades, a variety of mass analyzers have been employed in the research of ion chemistry. Hybrid configurations, such as quadrupole ion trap with a time-of-flight and or a …


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …


Fabrication Of Tissue Precursors Induced By Shape-Changing Hydrogels, Olukemi O. Akintewe Jan 2015

Fabrication Of Tissue Precursors Induced By Shape-Changing Hydrogels, Olukemi O. Akintewe

USF Tampa Graduate Theses and Dissertations

Scaffold based tissue reconstruction inherently limits regenerative capacity due to inflammatory response and limited cell migration. In contrast, scaffold-free methods promise formation of functional tissues with both reduced adverse host reactions and enhanced integration. Cell-sheet engineering is a well-known bottom-up tissue engineering approach that allows the release of intact cell sheet from a temperature responsive polymer such as poly-N-isopropylacrylamide (pNIPAAm). pNIPAAm is an ideal template for culturing cell sheets because it undergoes a sharp volume-phase transition owing to the hydrophilic and hydrophobic interaction around its lower critical solution temperature (LCST) of 32°C, a temperature close to physiological temperature. Compared to …


Proton-Electrostatic Localization: Explaining The Bioenergetic Conundrum In Alkalophilic Bacteria, James Weifu Lee Jan 2015

Proton-Electrostatic Localization: Explaining The Bioenergetic Conundrum In Alkalophilic Bacteria, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

The decades-longstanding energetic conundrum of alkalophilic bacteria as to how they are able to synthesize ATP has now, for the first time, been clearly solved using the proton-electrostatics localization hypothesis. This is a major breakthrough advance in understanding proton-coupling bioenergetics over the Nobel-prize work of Peter Mitchell’s chemiosmotic theory. The widespread textbook Mitchellian proton motive force (pmf) equation has now been significantly revised. Use of the newly derived equation results in an overall pmf value (215~233 mV) that is more than 4 times larger than that (44.3 mV) calculated from the Mitchellian equation for the alkalophilic bacteria growing at pH …


Burst Pressure Properties And Ex Vivo Analysis Of Alginate-Based Hydrogels For Tissue Sealant Applications, Patrick Nelson Charron Jan 2015

Burst Pressure Properties And Ex Vivo Analysis Of Alginate-Based Hydrogels For Tissue Sealant Applications, Patrick Nelson Charron

Graduate College Dissertations and Theses

Lung diseases, cancers, and trauma can result in injury to the connective tissue lining the lung, i.e., the pleura. Pleural injuries lead to pneumothoraxes or pleural effusions, i.e., air or fluid leaking out of the lung respectively, and potential lung collapse - an immediately life threatening condition. While several bioengineered soft tissue sealants exist on the market, there is only one sealant FDA-approved for use in pulmonary surgery. In addition, very limited techniques are presented in the literature for characterizing the burst properties of hydrogel tissue sealants. For my thesis, I proposed to develop a protocol for characterizing the burst …


In Vitro Study Of Wound-Healing Capabilities Of Bioactive Glass Fibers Under Various Culture Conditions, Sisi Chen Jan 2015

In Vitro Study Of Wound-Healing Capabilities Of Bioactive Glass Fibers Under Various Culture Conditions, Sisi Chen

Masters Theses

"Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying physiological and cellular mechanism behind this function remains unclear. In this study, in vitro dynamic flow modules were designed to mimic the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, and were used to investigate the biocompatibility and functionality of borate glass nano-/micro-fibers. Glass-cell interactions were investigated either by dosing fibers to the upstream of or co-cultured with cells, and two types of borate glasses (with or without CuO/ZnO doped were …


Development Of A Lab-On-A-Chip Device For Rapid Nanotoxicity Assessment In Vitro, Pratikkumar Shah Dec 2014

Development Of A Lab-On-A-Chip Device For Rapid Nanotoxicity Assessment In Vitro, Pratikkumar Shah

FIU Electronic Theses and Dissertations

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


The Discovery And Study Of Fluvirucin B1 Polyketide Synthase, Tsung-Yi Lin Nov 2014

The Discovery And Study Of Fluvirucin B1 Polyketide Synthase, Tsung-Yi Lin

Doctoral Dissertations

Rapidly decreasing numbers of viable therapeutic leads in the pharmaceutical pipeline demand new, sustainable methods for improved drug discovery and development. Despite vast improvements in de novo drug design and target recognition, Nature remains the richest source of small molecule therapeutics. Among many natural products, polyketides are not only the most promising ones for developing new antibiotic leads, but also exhibit unusually high therapeutic value ranging from clinical use as anticancer, antiviral, and immunosuppressant drugs. Modular polyketide synthases (PKSs) are dedicated nano-machinery that can be manipulated to produce a structurally diverse library for drug discovery programs. The ability to manipulate …


Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel Aug 2014

Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel

Graduate Theses and Dissertations

The morphology and composition of a nanoparticle (NP) play a critical role in determining the NP's properties and function. To date, researchers have created a myriad of NPs of different shapes, sizes, and compositions with interesting attributes and applications ushering a revolution in medicine, electronics, microscopy, and microfluidics.

In this study, gold (Au) nanosphere dimers (NSDs) have been synthesized through a novel self-assembly method. These particles were created from Au NPs mono-dispersed in aqueous solution via a process of centrifugation and capping agent replacement. Au NSDs consist of two Au NPs combined together with minimal gaps between them. Optical spectral …


Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier Jun 2014

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier

Andrew C. Hillier

The influence of oxidation state on the permeability of several probe molecules through conducting polymer membranes comprising composites of poly(aniline) and poly(styrenesulfonate) was examined in aqueous solution. Pure poly(aniline) membranes displayed a characteristic increase in permeability between reduced and half-oxidized states for neutrally charged phenol and negatively charged 4-hydroxybenzenesulfonate. In contrast, positively charged pyridine experienced decreased permeability through the membrane when poly(aniline) was switched from the reduced to the half-oxidized state. This behavior can be explained by a combination of oxidation-induced film swelling and the anion-exchange character of the positively charged membrane. The membrane composition was modified to include a …


Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier Jun 2014

Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier

Andrew C. Hillier

The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)62+, the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by probing the feedback current associated with …


High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier Jun 2014

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier

Andrew C. Hillier

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer. …


Fabrication Of Low-Cost Paper-Based Microfluidic Devices By Embossing Or Cut-And-Stack Methods, Martin M. Thuo, Ramses V. Martinez, Wen-Jie Lan, Xinyu Liu, Jabulani Barber, Manza B. Atkinson, Dineth Bandarage, Jean-Francis Bloch, George M. Whitesides Jun 2014

Fabrication Of Low-Cost Paper-Based Microfluidic Devices By Embossing Or Cut-And-Stack Methods, Martin M. Thuo, Ramses V. Martinez, Wen-Jie Lan, Xinyu Liu, Jabulani Barber, Manza B. Atkinson, Dineth Bandarage, Jean-Francis Bloch, George M. Whitesides

Martin M. Thuo

This article describes the use of embossing and “cut-and-stack” methods of assembly, to generate microfluidic devices from omniphobic paper and demonstrates that fluid flowing through these devices behaves similarly to fluid in an open-channel microfluidic device. The porosity of the paper to gases allows processes not possible in devices made using PDMS or other nonporous materials. Droplet generators and phase separators, for example, could be made by embossing “T”-shaped channels on paper. Vertical stacking of embossed or cut layers of omniphobic paper generated three-dimensional systems of microchannels. The gas permeability of the paper allowed fluid in the microchannel to contact …


Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for creating …


Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Considerable effort has been expended in efforts to create surfaces that resist the adsorption of proteins and cells for biomedical applications. The majority of such work has focused on surfaces constructed from bulk polymers or thin polymer films. However, the fabrication of surfaces via self-assembled monolayers (SAMs) has attracted considerable interest because of the robustness, versatility, and wide-ranging applicability of these materials. SAMs are particularly appealing for biological systems where well-defined surface chemistries can be created to facilitate coupling, biorecognition, or cell adhesion along with a host of other applications in biochemistry and biotechnology.


Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen Jan 2014

Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen

Electronic Thesis and Dissertation Repository

Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the surface of nanoparticles to have enhanced biocompatibility and functionality for the in vitro and in vivo applications, especially in delivering locally and recognizing biomolecules. Herein, the goal of this research work is to develop advanced NPs with well-tailored surface functionalities and/or bio-functionality for the applications in cell tracking and analytes detection.

In the first project, quantum dots incorporating with gelatin nanoparticles (QDs-GNPs) have been developed for bioimaging applications. Two different approaches have been …


Design And Study Of The Efflux Function Of The Egfp Fused Mexab-Oprm Membrane Transporter In Pseudomonas Aeruginosa Using Spectroscopy, Feng Ding, Kerry J. Lee, Ardeschir Vahedi-Faridi, Hiroshi Yoneyama, Christopher J. Osgood, Xiao-Hong Nancy Xu Jan 2014

Design And Study Of The Efflux Function Of The Egfp Fused Mexab-Oprm Membrane Transporter In Pseudomonas Aeruginosa Using Spectroscopy, Feng Ding, Kerry J. Lee, Ardeschir Vahedi-Faridi, Hiroshi Yoneyama, Christopher J. Osgood, Xiao-Hong Nancy Xu

Biological Sciences Faculty Publications

Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed a fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in the Δ MexB (MexB deletion) strain of Pseudomonas aeruginosato create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined its expression in live …


Xena: An Automated 'Open-Source' 129xe Hyperpolarizer For Clinical Use, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Iga Muradyan, Mikayel Dabaghyan, Kaili Ranta, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson Dec 2013

Xena: An Automated 'Open-Source' 129xe Hyperpolarizer For Clinical Use, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Iga Muradyan, Mikayel Dabaghyan, Kaili Ranta, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson

Nicholas Whiting

Here we provide a full report on the construction, components, and capabilities of our consortium’s “opensource”
large-scale (~1 L/h) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. …


Formulation Development Of A Polymer-Drug Matrix With A Controlled Release Profile For The Treatment Of Glaucoma, Eric W. Tsoi Dec 2013

Formulation Development Of A Polymer-Drug Matrix With A Controlled Release Profile For The Treatment Of Glaucoma, Eric W. Tsoi

Master's Theses

Glaucoma is the leading cause of blindness in the United States accounting for 9-12% of all cases of blindness. Currently, the front line treatment for glaucoma are prostaglandins that may have to be taken up to several times a day. Even with proper treatment, roughly 11% of the patients using the treatment are non-compliant and lose their vision. In this project, ForSight Laboratories has developed a pharmaceutical drug delivering implant with the capability of sustaining long-term release of a prostaglandin as a new way to treat the condition. This project reports the product development of a polymer drug matrix with …


Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang Aug 2013

Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang

Dissertations - ALL

The field of drug delivery has provided a solution to the limited efficacy and high toxicity of many drugs. Nano-sized drug carriers are popular because their size allows for selective accumulation in the diseased area. Polysaccharides are non-toxic and biodegradable natural polymers that can serve as the basis for these nano-sized carriers. Polysialic acid (PSA) is such a polysaccharide with strong hydrophilicity that may reduce uptake by the reticuloendothelial system and prolong drug circulation. In this study, we developed PSA-based nanocarriers, specifically micelles and nanoparticles, for improved drug delivery with improved efficacy and minimized toxicity. PSA-based micelle systems were developed …


Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec Jun 2013

Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec

Electronic Thesis and Dissertation Repository

Biomaterials can be used in a wide variety of medical applications owing to their breadth of characteristics that can be imparted by varying their chemical structures. Butyl rubber (IIR), which is a copolymer of isobutylene (IB) and small percentages of isoprene (IP), is particularly attractive as a biomaterial because of its elastomeric mechanical properties, biocompatibility, impermeability and high damping characteristics. IIR is typically vulcanized through chemical-based crosslinking mechanisms. However, these methods are not acceptable for biological applications. This thesis focuses on the synthesis of IIR-polyester graft copolymers by grafting biodegradable and biocompatible polyesters including poly(caprolactone) (PCL) and poly(d,l-lactide) (PDLLA) to …


Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore May 2013

Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore

Electronic Theses and Dissertations

Two batches of CdSe QDs with different sizes were synthesized for immobilizing in polyisoprene (PI), polymethylmethacrylate (PMMA), and low-density polyethylene (LDPE). The combinations of QDs and polymer substrates were evaluated for their analytical fit-for-use in applicable immunoassays. Hydrogen peroxide standards were injected into the flow injection analyzer (FIA) constructed to simulate enzyme-generated hydrogen peroxide reacting with bis-(2,4,6-trichlorophenyl) oxalate.

Linear correlations between hydrogen peroxide and chemilumenscent intensities yielded regression values greater than 0.9750 for hydrogen peroxide concentrations between 1.0 x 10-4 M and 1.0 x 10-1 M. The developed technique’s LOD was approximately 10 ppm. Variability of the prepared …


Picture Of A Chelate In Exchange: The Crystal Structure Of Nahodotma, A 'Semi'-Hydrated Chelate, Katherine M. Payne, Edward J. Valente, Silvio Aime, Mauro Botta, Mark Woods Feb 2013

Picture Of A Chelate In Exchange: The Crystal Structure Of Nahodotma, A 'Semi'-Hydrated Chelate, Katherine M. Payne, Edward J. Valente, Silvio Aime, Mauro Botta, Mark Woods

Chemistry Faculty Publications and Presentations

Crystallography generally only provides static structural information. This can render it an ineffective technique for probing dynamic solution state processes. A crystal of HoDOTMA affords unique structures that effectively represent that of a lanthanide tetra-acetate chelate mid-way through the water exchange process.


Inhibition Of Bacillus Cereus Growth By Bacteriocin Producing Bacillus Subtilis Isolated From Fermented Baobab Seeds (Maari) Is Substrate Dependent, Donatien Kaboré, Dennis S. Nielsen, Hagrétoui Sawadogo-Lingan, Bréhima Diawara, Mamoudou H. Dicko Prof., Mogens Jakobsen, Line Thorsen Jan 2013

Inhibition Of Bacillus Cereus Growth By Bacteriocin Producing Bacillus Subtilis Isolated From Fermented Baobab Seeds (Maari) Is Substrate Dependent, Donatien Kaboré, Dennis S. Nielsen, Hagrétoui Sawadogo-Lingan, Bréhima Diawara, Mamoudou H. Dicko Prof., Mogens Jakobsen, Line Thorsen

Pr. Mamoudou H. DICKO, PhD

Maari is a spontaneously alkaline fermented food condiment made from baobab tree seeds. Due to the spontaneous nature of maari fermentations growth of the opportunistic human pathogen Bacillus cereus is occasionally observed. Bacillus subtilis strains are important for alkaline seed fermentations because of their enzymatic activities contributing to desirable texture, flavor and pH development. Some B. subtilis strains have antimicrobial properties against B. cereus. In the present work, three bacteriocin producing B. subtilis strains (B3, B122 and B222) isolated from maari were tested. The production of antimicrobial activity by the three strains was found to be greatly influenced by the …


Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding Jan 2013

Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding

Dissertations, Master's Theses and Master's Reports - Open

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore …


Synthesis And Characterization Of Biodegradable Poly(Vinyl Esters) With Hdac Inhibitory Activity, Kyle Lawrence Horton Jan 2013

Synthesis And Characterization Of Biodegradable Poly(Vinyl Esters) With Hdac Inhibitory Activity, Kyle Lawrence Horton

Wayne State University Theses

HDAC inhibitors are known to have anti-inflammatory properties. HDAC inhibitors are used in combination with Oct4 to generate induced pluripotent stem cells. I hypothesized that polyesters based on simple aliphatic HDAC inhibitors like valproic acid (VPA) and phenylbutyric acid (PBA) can serve as alternatives to existing polyester biomaterials with improved anti-inflammatory properties and as scaffolds for generation of iPSCs when used in combination with layer-by-layer thin films delivering reprogramming transcription factors. Vinyl ester of phenylbutyric acid (VEPA) and vinyl ester of valproic acid (VEVA) were synthesized from their carboxylic acid precursors using an iridium complex catalyst at yields as high …


Comparison Of Phenolic Compounds And Antioxidant Capacities Of Traditional Sorghum Beers With Other Alcoholic Beverages, Fatouma Abdoul-Latif, Romaric G. Bayili, Louis C. Obame, Mamoudou H. Dicko Prof. Oct 2012

Comparison Of Phenolic Compounds And Antioxidant Capacities Of Traditional Sorghum Beers With Other Alcoholic Beverages, Fatouma Abdoul-Latif, Romaric G. Bayili, Louis C. Obame, Mamoudou H. Dicko Prof.

Pr. Mamoudou H. DICKO, PhD

Thirty samples of sorghum beers “dolo” were selected from traditionally fermented household manufacturers from Burkina Faso. Dolo samples were screened for their total phenolic content, proanthocyanidins and putative antioxidant capacities, and were compared with industrial beers and wines. Total phenols were measured using the Folin-Ciocalteu method. Proanthocyanidins content were determined by the method of HCl-butanol hydrolysis. Antioxidant activities were evaluated both with 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the trolox equivalent antioxidant capacity (TEAC) using 2,2’-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid radical) (ABTS•+). The average contents of total phenols and proanthocyanidins were 506 μg GAE/ml of dolo and 45 μg APE/ml of dolo, respectively. An …


A Novel Microfluidic Enrichment Technique For Carbonylated Proteins, Bryant C. Hollins Oct 2012

A Novel Microfluidic Enrichment Technique For Carbonylated Proteins, Bryant C. Hollins

Doctoral Dissertations

Proteins are the building blocks of cells in living organisms, and are composed of amino acids. The expression of proteins is regulated by the processes of transcription and translation. Proteins undergo post-translational modifications in order to dictate their role physiologically within a cell.

Not all post-translational modifications are beneficial for the protein or the cell. One type of post-translational modification, called carbonylation, irreversibly places a carbonyl group onto an amino acid residue, most commonly proline, lysine, arginine, and threonine. This modification can have severe consequences physiologically, including loss of solubility, loss of function, and protein aggregation.

Carbonylated proteins have commonly …


Toxicity Assessment And Analgesic Activity Investigation Of Aqueous Acetone Extracts Of Sida Acuta Burn F. And Sida Cordifolia L. (Malvaceae), Medicinal Plants Of Burkina Faso, Kiessoum Konate, Adama Hilou, Raïssa Rr Aworet-Samseny, Alain Souza, Nicolas Barro, Mamoudou H. Dicko Prof., Jacques Datté, Bertrand M’Batchi Aug 2012

Toxicity Assessment And Analgesic Activity Investigation Of Aqueous Acetone Extracts Of Sida Acuta Burn F. And Sida Cordifolia L. (Malvaceae), Medicinal Plants Of Burkina Faso, Kiessoum Konate, Adama Hilou, Raïssa Rr Aworet-Samseny, Alain Souza, Nicolas Barro, Mamoudou H. Dicko Prof., Jacques Datté, Bertrand M’Batchi

Pr. Mamoudou H. DICKO, PhD

Background Sida acuta Burn f. and Sida cordifolia L. (Malvaceae) are traditionally used in Burkina Faso to treat several ailments, mainly pains, including abdominal infections and associated diseases. Despite the extensive use of these plants in traditional health care, literature provides little information regarding their toxicity and the pharmacology. This work was therefore designed to investigate the toxicological effects of aqueous acetone extracts of Sida acuta Burn f. and Sida cordifolia L. Furthermore, their analgesic capacity was assessed, in order to assess the efficiency of the traditional use of these two medicinal plants from Burkina Faso. Method For acute toxicity …