Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Nanoparticles

Series

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

High-Throughput Synthesis Of Carbohydrates And Functionalization Of Polyanhydride Nanoparticles, Brenda Rocio Carrillo-Conde, Rajarshi Roychoudhury, Ana Vianey Chavez-Santoscoy, Balaji Narasimhan, Nicola L.B. Pohl Jul 2012

High-Throughput Synthesis Of Carbohydrates And Functionalization Of Polyanhydride Nanoparticles, Brenda Rocio Carrillo-Conde, Rajarshi Roychoudhury, Ana Vianey Chavez-Santoscoy, Balaji Narasimhan, Nicola L.B. Pohl

Chemical and Biological Engineering Publications

Transdisciplinary approaches involving areas such as material design, nanotechnology, chemistry, and immunology have to be utilized to rationally design efficacious vaccines carriers. Nanoparticle-based platforms can prolong the persistence of vaccine antigens, which could improve vaccine immunogenicity 1. Several biodegradable polymers have been studied as vaccine delivery vehicles 1; in particular, polyanhydride particles have demonstrated the ability to provide sustained release of stable protein antigens and to activate antigen presenting cells and modulate immune responses 2-12. The molecular design of these vaccine carriers needs to integrate the rational selection of polymer properties as well as the incorporation of appropriate targeting agents ...


Harvesting Murine Alveolar Macrophages And Evaluating Cellular Activation Induced By Polyanhydride Nanoparticles., Ana Vianey Chavez-Santoscoy, Lucas Mark Huntimer, Amanda Ellen Ramer-Tait, Michael J. Wannemuehler, Balaji Narasimhan Jun 2012

Harvesting Murine Alveolar Macrophages And Evaluating Cellular Activation Induced By Polyanhydride Nanoparticles., Ana Vianey Chavez-Santoscoy, Lucas Mark Huntimer, Amanda Ellen Ramer-Tait, Michael J. Wannemuehler, Balaji Narasimhan

Chemical and Biological Engineering Publications

Biodegradable nanoparticles have emerged as a versatile platform for the design and implementation of new intranasal vaccines against respiratory infectious diseases. Specifically, polyanhydride nanoparticles composed of the aliphatic sebacic acid (SA), the aromatic 1,6-bis(p-carboxyphenoxy)hexane (CPH), or the amphiphilic 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) display unique bulk and surface erosion kinetics and can be exploited to slowly release functional biomolecules (e.g., protein antigens, immunoglobulins, etc.) in vivo. These nanoparticles also possess intrinsic adjuvant activity, making them an excellent choice for a vaccine delivery platform. In order to elucidate the mechanisms governing the activation of innate immunity ...


Analyzing Cellular Internalization Of Nanoparticles And Bacteria By Multi-Spectral Imaging Flow Cytometry., Yashdeep Phanse, Amanda Ellen Ramer-Tait, Sherree L. Friend, Brenda Rocio Carrillo-Conde, Paul A. Lueth, Carrie Jo Oster, Gregory J. Phillips, Balaji Narasimhan, Michael J. Wannemuehler, Bryan H. Bellaire Jun 2012

Analyzing Cellular Internalization Of Nanoparticles And Bacteria By Multi-Spectral Imaging Flow Cytometry., Yashdeep Phanse, Amanda Ellen Ramer-Tait, Sherree L. Friend, Brenda Rocio Carrillo-Conde, Paul A. Lueth, Carrie Jo Oster, Gregory J. Phillips, Balaji Narasimhan, Michael J. Wannemuehler, Bryan H. Bellaire

Chemical and Biological Engineering Publications

Nanoparticulate systems have emerged as valuable tools in vaccine delivery through their ability to efficiently deliver cargo, including proteins, to antigen presenting cells. Internalization of nanoparticles (NP) by antigen presenting cells is a critical step in generating an effective immune response to the encapsulated antigen. To determine how changes in nanoparticle formulation impact function, we sought to develop a high throughput, quantitative experimental protocol that was compatible with detecting internalized nanoparticles as well as bacteria. To date, two independent techniques, microscopy and flow cytometry, have been the methods used to study the phagocytosis of nanoparticles. The high throughput nature of ...


Amphiphilic Polyanhydride Nanoparticles Stabilize Bacillus Anthracis Protective Antigen, L. K. Petersen, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Michael J. Wannemuehler, Balaji Narasimhan Jan 2012

Amphiphilic Polyanhydride Nanoparticles Stabilize Bacillus Anthracis Protective Antigen, L. K. Petersen, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Michael J. Wannemuehler, Balaji Narasimhan

Chemical and Biological Engineering Publications

Advancements toward an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose ...


Mannose-Functionalized "Pathogen-Like" Polyanhydride Nanoparticles Target C-Type Lectin Receptors On Dendritic Cells, Brenda Rocio Carrillo-Conde, Eun-Ho Song, Ana Vianey Chavez-Santoscoy, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Nicola L.B. Pohl, Michael J. Wannemuehler, Bryan H. Bellaire, Balaji Narasimhan Jan 2011

Mannose-Functionalized "Pathogen-Like" Polyanhydride Nanoparticles Target C-Type Lectin Receptors On Dendritic Cells, Brenda Rocio Carrillo-Conde, Eun-Ho Song, Ana Vianey Chavez-Santoscoy, Yashdeep Phanse, Amanda Ellen Ramer-Tait, Nicola L.B. Pohl, Michael J. Wannemuehler, Bryan H. Bellaire, Balaji Narasimhan

Chemical and Biological Engineering Publications

Targeting pathogen recognition receptors on dendritic cells (DCs) offers the advantage of triggering specific signaling pathways to induce a tailored and robust immune response. In this work, we describe a novel approach to targeted antigen delivery by decorating the surface of polyanhydride nanoparticles with specific carbohydrates to provide "pathogen-like" properties that ensure nanoparticles engage C-type lectin receptors on DCs. The surface of polyanhydride nanoparticles was functionalized by covalent linkage of dimannose and lactose residues using an amine-carboxylic acid coupling reaction. Coculture of functionalized nanoparticles with bone marrow-derived DCs significantly increased cell surface expression of MHC II, the T cell costimulatory ...