Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Quantitative Elucidation Of A Distinct Spatial Gradient-Sensing Mechanism In Fibroblasts, Ian C. Schneider, Jason M. Haugh Dec 2005

Quantitative Elucidation Of A Distinct Spatial Gradient-Sensing Mechanism In Fibroblasts, Ian C. Schneider, Jason M. Haugh

Ian C. Schneider

Migration of eukaryotic cells toward a chemoattractant often relies on their ability to distinguish receptor-mediated signaling at different subcellular locations, a phenomenon known as spatial sensing. A prominent example that is seen during wound healing is fibroblast migration in platelet-derived growth factor (PDGF) gradients. As in the well-characterized chemotactic cells Dictyostelium discoideum and neutrophils, signaling to the cytoskeleton via the phosphoinositide 3-kinase pathway in fibroblasts is spatially polarized by a PDGF gradient; however, the sensitivity of this process and how it is regulated are unknown. Through a quantitative analysis of mathematical models and live cell total internal reflection fluorescence microscopy …


Spatial Analysis Of 3′ Phosphoinositide Signaling In Living Fibroblasts, Iii: Influence Of Cell Morphology And Morphological Polarity, Ian C. Schneider, Elizabeth M. Parrish, Jason M. Haugh Aug 2005

Spatial Analysis Of 3′ Phosphoinositide Signaling In Living Fibroblasts, Iii: Influence Of Cell Morphology And Morphological Polarity, Ian C. Schneider, Elizabeth M. Parrish, Jason M. Haugh

Ian C. Schneider

Activation of phosphoinositide (PI) 3-kinase is a required signaling pathway in fibroblast migration directed by platelet-derived growth factor. The pattern of 3′ PI lipids in the plasma membrane, integrating local Pl 3-kinase activity as well as 3′ PI diffusion and turnover, influences the spatiotemporal regulation of the cytoskeleton. In fibroblasts stimulated uniformly with platelet-derived growth factor, visualized using total internal reflection fluorescence microscopy, we consistently observed localized regions with significantly higher or lower 3′ PI levels than adjacent regions (hot and cold spots, respectively). A typical cell contained multiple hot spots, coinciding with apparent leading edge structures, and at most …


Elastic Waves Push Organic Fluids From Reservoir Rock, Igor A. Beresnev, R. Dennis Vigil, Wenqing Li, Wayne D. Pennington, Roger M. Turpening, Pavel P. Iassonov, Robert P. Ewing Jul 2005

Elastic Waves Push Organic Fluids From Reservoir Rock, Igor A. Beresnev, R. Dennis Vigil, Wenqing Li, Wayne D. Pennington, Roger M. Turpening, Pavel P. Iassonov, Robert P. Ewing

R. Dennis Vigil

Elastic waves have been observed to increase productivity of oil wells, although the reason for the vibratory mobilization of the residual organic fluids has remained unclear. Residual oil is entrapped as ganglia in pore constrictions because of resisting capillary forces. An external pressure gradient exceeding an ‘‘unplugging’’ threshold is needed to carry the ganglia through. The vibrations help overcome this resistance by adding an oscillatory inertial forcing to the external gradient; when the vibratory forcing acts along the gradient and the threshold is exceeded, instant ‘‘unplugging’’ occurs. The mobilization effect is proportional to the amplitude and inversely proportional to the …