Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Biomedical Engineering and Bioengineering

Pulsed Electric Fields Sensitize Methicillin-Resistant Staphylococcus Aureus To Antibacterial Therapies And Stimulate Host Immune Responses, Alexandra E. Chittams-Miles Apr 2024

Pulsed Electric Fields Sensitize Methicillin-Resistant Staphylococcus Aureus To Antibacterial Therapies And Stimulate Host Immune Responses, Alexandra E. Chittams-Miles

Biomedical Sciences Theses & Dissertations

This research explores the impact of nanosecond pulsed electric fields (nsPEF) on two fronts: their immune stimulatory effects and their potential as a novel strategy to enhance the sensitivity of Methicillin-resistant Staphylococcus aureus (MRSA) to clinically relevant antibiotics. While pulsed electric fields have been reported to have an immune stimulatory effect, the mechanisms responsible for these effects have yet to be determined.

Our investigation addresses the rising concern of MRSA derived skin and soft tissue infections (SSTIs). Consistent with other publications, we found that nsPEF alone cause modest inactivation of planktonic MRSA. We then investigated the effects of nsPEF in …


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Engineering Of Ideal Systems For The Study And Direction Of Stem Cell Asymmetrical Division And Fate Determination, Martina Zamponi Aug 2022

Engineering Of Ideal Systems For The Study And Direction Of Stem Cell Asymmetrical Division And Fate Determination, Martina Zamponi

Biomedical Engineering Theses & Dissertations

The cellular microenvironment varies significantly across tissues, and it is constituted by both resident cells and the macromolecules they are exposed to. Cues that the cells receive from the microenvironment, as well as the signaling transmitted to it, affect their physiology and behavior. This notion is valid in the context of stem cells, which are susceptible to biochemical and biomechanical signaling exchanged with the microenvironment, and which plays a fundamental role in establishing fate determination and cell differentiation events. The definition of the molecular mechanisms that drive stem cell asymmetrical division, and how these are modulated by microenvironmental signaling, is …


Trials And Tribulations Of Humanizing Mice For Cancer Research, Brittney Ruedlinger, Steven Warsof, Eric Feliberti, Mary Beth Hughes, Ayobami ‘Edwin’ Oshin, Chunqi Jiang, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe Apr 2021

Trials And Tribulations Of Humanizing Mice For Cancer Research, Brittney Ruedlinger, Steven Warsof, Eric Feliberti, Mary Beth Hughes, Ayobami ‘Edwin’ Oshin, Chunqi Jiang, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe

The Graduate School Posters

Cancers are aggressive, evasive, and ruthless killers, claiming millions of lives every year. Cancers are heterogeneous and there is often no single, clearly defined problem as they harness and manipulate a multitude of fundamental mechanisms at the very essence of life. To investigate these mechanisms and vet potential interventive therapies, humanized mice offer a unique model as a prelude to the use of nanosecond pulse stimulation (NPS), a pulse power technology applying nanosecond duration, high electric field pulses, to ablate human tumors. Immunodeficient mouse strains, NSG and NSG-SGM3, were engrafted with human immune cells and human tumors, which would allow …


Cyclophilin D Is A Sensor Of Nano-Pulse Stimulation, Brittney Ruedlinger, Bani Hani Maisoun, Lucas Potter, Nicola Lai, Stephen J. Beebe Apr 2021

Cyclophilin D Is A Sensor Of Nano-Pulse Stimulation, Brittney Ruedlinger, Bani Hani Maisoun, Lucas Potter, Nicola Lai, Stephen J. Beebe

The Graduate School Posters

Nano-Pulse Stimulation (NPS), a pulsed power-derived technology, stimulates structural and functional changes in plasma membranes and cellular organelles. NPS induces a Ca2+ influx and opening of the mitochondrial permeability transition pore (mPTP) that dissipates the mitochondrial membrane potential (ΔΨm) and, when sustained, induces regulated cell death. Here we show that in rat cardiomyoblasts (H9C2) cyclophilin D (CypD) is a mitochondrial sensor for NPS as defined by observations that loss of ΔΨm is Ca2+ and mitochondrial reactive oxygen species (mROS) dependent and cyclosporin A (CsA)-sensitive, which are diagnostic qualities for effects on CypD and the mPTP. …


Stobe Photography Mapping Of Cell Membrane Potential With Nanosecond Resolution, Allen S. Kiester, Bennett L. Ibey, Zachary N. Coker, Andrei G. Pakhomov, Joel N. Bixler Jan 2021

Stobe Photography Mapping Of Cell Membrane Potential With Nanosecond Resolution, Allen S. Kiester, Bennett L. Ibey, Zachary N. Coker, Andrei G. Pakhomov, Joel N. Bixler

Bioelectrics Publications

The ability to directly observe membrane potential charging dynamics across a full microscopic field of view is vital for understanding interactions between a biological system and a given electrical stimulus. Accurate empirical knowledge of cell membrane electrodynamics will enable validation of fundamental hypotheses posited by the single shell model, which includes the degree of voltage change across a membrane and cellular sensitivity to external electric field non-uniformity and directionality. To this end, we have developed a high-speed strobe microscopy system with a time resolution of ~ 6 ns that allows us to acquire time-sequential data for temporally repeatable events (non-injurious …


Biomechanical And Biophysical Properties Of Breast Cancer Cells Under Varying Glycemic Regimens, Diganta Dutta, Xavier-Lewis Palmer, Jose Ortega-Rodas, Vasundhara Balraj, Indrani Ghosh Dastider, Surabhi Chandra Nov 2020

Biomechanical And Biophysical Properties Of Breast Cancer Cells Under Varying Glycemic Regimens, Diganta Dutta, Xavier-Lewis Palmer, Jose Ortega-Rodas, Vasundhara Balraj, Indrani Ghosh Dastider, Surabhi Chandra

Electrical & Computer Engineering Faculty Publications

Diabetes accelerates cancer cell proliferation and metastasis, particularly for cancers of the pancreas, liver, breast, colon, and skin. While pathways linking the 2 disease conditions have been explored extensively, there is a lack of information on whether there could be cytoarchitectural changes induced by glucose which predispose cancer cells to aggressive phenotypes. It was thus hypothesized that exposure to diabetes/high glucose alters the biomechanical and biophysical properties of cancer cells more than the normal cells, which aids in advancing the cancer. For this study, atomic force microscopy indentation was used through microscale probing of multiple human breast cancer cells (MCF-7, …


Modulation Of Ros In Nanosecond-Pulsed Plasma-Activated Media For Dosage-Dependent Cancer Cell Inactivation In Vitro, Chunqi Jiang, Esin Bengisu Sozer, Shutong Song, Nicola Lai, P. Thomas Vernier, Sigi Guo Nov 2020

Modulation Of Ros In Nanosecond-Pulsed Plasma-Activated Media For Dosage-Dependent Cancer Cell Inactivation In Vitro, Chunqi Jiang, Esin Bengisu Sozer, Shutong Song, Nicola Lai, P. Thomas Vernier, Sigi Guo

Bioelectrics Publications

Dosage control of reactive oxygen and nitrogen species (RONS) is critical to low-temperature plasma applications in cancer therapy. Production of RONS by atmospheric pressure, nonequilibrium plasmas in contact with liquid may be modulated via plasma conditions including plasma treatment time and pulse voltage and repetition frequency. In this study, a terephthalic acid-based probe was used to measure hydroxyl radicals [OHaq] in water exposed to plasma and to demonstrate that the OHag concentration increases linearly with treatment time. Fluorometric measurements of hydrogen peroxide concentration in plasma-activated water show a linear relationship between the H2O2 production …


Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Intratumoral Delivery Of Plasmid Il12 Via Electroporation Leads To Regression Of Injected And Noninjected Tumors In Merkel Cell Carcinoma, Shailender Bhatia, Natalie V. Longino, Natalie J. Miller, Rima Kulikauskas, Jayasri G. Iyer, Dafina Ibrani, Astrid Blom, David R. Byrd, Upendra Parvathaneni, Christopher Twitty, Jean S. Campbell, Mai H. Le, Sharron Gargosky, Robert H. Pierce, Richard Heller, Adil Daud, Paul Nghiem Jan 2019

Intratumoral Delivery Of Plasmid Il12 Via Electroporation Leads To Regression Of Injected And Noninjected Tumors In Merkel Cell Carcinoma, Shailender Bhatia, Natalie V. Longino, Natalie J. Miller, Rima Kulikauskas, Jayasri G. Iyer, Dafina Ibrani, Astrid Blom, David R. Byrd, Upendra Parvathaneni, Christopher Twitty, Jean S. Campbell, Mai H. Le, Sharron Gargosky, Robert H. Pierce, Richard Heller, Adil Daud, Paul Nghiem

Bioelectrics Publications

Purpose: Interleukin-12 (IL12) promotes adaptive type I immunity and has demonstrated antitumor efficacy, but systemic administration leads to severe adverse events (AE), including death. This pilot trial investigated safety, efficacy, and immunologic activity of intratumoral delivery of IL12 plasmid DNA (tavo) via in vivo electroporation (i.t.-tavo-EP) in patients with Merkel cell carcinoma (MCC), an aggressive virus-associated skin cancer.

Experimental Design: Fifteen patients with MCC with superficial injectable tumor(s) received i.t.-tavo-EP on days 1, 5, and 8 of each cycle. Patients with locoregional MCC (cohort A, N = 3) received one cycle before definitive surgery in week 4. …


Nanosecond Pulsed Electric Signals Can Affect Electrostatic Environment Of Protiens Below The Threshold Of Conformational Effects: The Case Study Of Sod1 With A Molecular Simulation Study, Elena Della Valle, Paolo Marracino, Olga Pakhomova, Micaela Liberti, Francesca Apollonio Jan 2019

Nanosecond Pulsed Electric Signals Can Affect Electrostatic Environment Of Protiens Below The Threshold Of Conformational Effects: The Case Study Of Sod1 With A Molecular Simulation Study, Elena Della Valle, Paolo Marracino, Olga Pakhomova, Micaela Liberti, Francesca Apollonio

Bioelectrics Publications

Electric fields can be a powerful tool to interact with enzymes or proteins, with an intriguing perspective to allow protein manipulation. Recently, researchers have focused the interest on intracellular enzyme modifications triggered by the application of nanosecond pulsed electric fields. These findings were also supported by theoretical predictions from molecular dynamics simulations focussing on significant variations in protein secondary structures. In this work, a theoretical study utilizing molecular dynamics simulations is proposed to explore effects of electric fields of high intensity and very short nanosecond duration applied to the superoxide dismutase (Cu/Zn-SOD or SOD-1), an important enzyme involved in the …


Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller Dec 2018

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller

Bioelectrics Publications

Metastatic melanoma is an aggressive skin cancer with a relatively low survival rate. Immune-based therapies have shown promise in the treatment of melanoma, but overall complete response rates are still low. Previous studies have demonstrated the potential of plasmid IL-12 (pIL-12) delivered by gene electrotransfer (GET) to be an effective immunotherapy for melanoma. However, events occurring in the tumor microenvironment following delivery have not been delineated. Therefore, utilizing a B16F10 mouse melanoma model, we evaluated changes in the tumor microenvironment following delivery of pIL-12 using different GET parameters or injection of plasmid alone. The results revealed a unique immune cell …


Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He Apr 2018

Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He

Computer Science Faculty Publications

Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin …


Alteration Of Metabolite Profiling By Cold Atmospheric Plasma Treatment In Human Myeloma Cells, Dehui Xu, Yujing Xu, Ning Ning, Qingjie Cui, Zhijie Liu, Xiaohua Wang, Dingxin Liu, Hailan Chen, Michael G. Kong Jan 2018

Alteration Of Metabolite Profiling By Cold Atmospheric Plasma Treatment In Human Myeloma Cells, Dehui Xu, Yujing Xu, Ning Ning, Qingjie Cui, Zhijie Liu, Xiaohua Wang, Dingxin Liu, Hailan Chen, Michael G. Kong

Bioelectrics Publications

BACKGROUND: Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet.

METHODS: In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and …


Electrotransfer Of Different Control Plasmids Elicits Different Antitumor Effectiveness In B16.F10 Melanoma, Masa Bosnjak, Tanjo Jesenko, Urska Kamensek, Gregor Sersa, Jaka Lavrencak, Loree Heller, Maja Cemazar Jan 2018

Electrotransfer Of Different Control Plasmids Elicits Different Antitumor Effectiveness In B16.F10 Melanoma, Masa Bosnjak, Tanjo Jesenko, Urska Kamensek, Gregor Sersa, Jaka Lavrencak, Loree Heller, Maja Cemazar

Bioelectrics Publications

Several studies have shown that different control plasmids may cause antitumor action in different murine tumor models after gene electrotransfer (GET). Due to the differences in GET protocols, plasmid vectors, and experimental models, the observed antitumor effects were incomparable. Therefore, the current study was conducted comparing antitumor effectiveness of three different control plasmids using the same GET parameters. We followed cytotoxicity in vitro and the antitumor effect in vivo after GET of control plasmids pControl, pENTR/U6 scr and pVAX1 in B16.F10 murine melanoma cells and tumors. Types of cell death and upregulation of selected cytosolic DNA sensors and cytokines were …


Nano-Pulse Stimulation For The Treatment Of Pancreatic Cancer And The Changes In Immune Profile, Sigi Guo, Niculina I. Burcus, James Hornef, Yu Jing, Chunqi Jiang, Richard Heller, Stephen J. Beebe Jan 2018

Nano-Pulse Stimulation For The Treatment Of Pancreatic Cancer And The Changes In Immune Profile, Sigi Guo, Niculina I. Burcus, James Hornef, Yu Jing, Chunqi Jiang, Richard Heller, Stephen J. Beebe

Bioelectrics Publications

A Pancreatic cancer is a notorious malignant neoplasm with an extremely poor prognosis. Current standard of care is rarely effective against late-stage pancreatic cancer. In this study, we assessed nanopulse stimulation (NPS) as a local treatment for pancreatic cancer in a syngeneic mouse Pan02 pancreatic cancer model and characterized corresponding changes in the immune profile. A single NPS treatment either achieved complete tumor regression or prolonged overall survival in animals with partial tumor regression. While this is very encouraging, we also explored if this local ablation effect could also result in immune stimulation, as was observed when NPS led to …


Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas Jan 2018

Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment …


Nano-Pulse Stimulation Ablates Orthotopic Rat Hepatocellular Carcinoma And Induces Innate And Adaptive Memory Immune Mechanisms That Prevent Recurrence, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe Jan 2018

Nano-Pulse Stimulation Ablates Orthotopic Rat Hepatocellular Carcinoma And Induces Innate And Adaptive Memory Immune Mechanisms That Prevent Recurrence, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe

Bioelectrics Publications

Nano-pulse stimulation (NPS), previously called nsPEFs, induced a vaccine-like effect after ablation of orthotopic N1-S1 hepatocellular carcinoma (HCC), protecting rats from subsequent challenges with N1-S1 cells. To determine immunity, immune cell phenotypes were analyzed in naïve, treated and protected rats. NPS provides a positive, post-ablation immuno-therapeutic outcome by alleviating immunosuppressive T regulatory cells (Treg) in the tumor microenvironment (TME), allowing dendritic cell influx and inducing dynamic changes in natural killer cells (NKs), NKT-cells and T-lymphocytes in blood, spleen and liver. NPS induced specific increases in NKs and NKT-cells expressing CD8 and activation receptors CD314-NKG2D and CD161 (NK1.1) in the TME …


Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier Jan 2018

Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier

Bioelectrics Publications

Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with …


Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar Jan 2018

Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar

Bioelectrics Publications

Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding …


Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu Feb 2017

Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu

Mechanical & Aerospace Engineering Faculty Publications

The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na, Ca2+, K channels). …


Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian Jan 2017

Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian

Bioelectrics Publications

This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01 M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to …


Cytosolic Dna Sensor Upregulation Accompanies Dna Electrotransfer In B16.F10 Melanoma Cells, Katarina Znidar, Masa Bosnjak, Maja Cemazar, Loree C. Heller Jan 2016

Cytosolic Dna Sensor Upregulation Accompanies Dna Electrotransfer In B16.F10 Melanoma Cells, Katarina Znidar, Masa Bosnjak, Maja Cemazar, Loree C. Heller

Bioelectrics Publications

In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFN β mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16. F10 …


Radio-Frequency Plasma Polymerized Biodegradable Carrier For In Vivo Release Of Cis-Platinum, Sudhir Bhatt, Fatemeh Valamanesh, Jerome Pulpytel, Rea Lo Dico, Aliby Baiyukha, Iman Al-Dybiat, Marc Pocard, Farzaneh Arefi-Khonsari, Massoud Mirshahi Jan 2016

Radio-Frequency Plasma Polymerized Biodegradable Carrier For In Vivo Release Of Cis-Platinum, Sudhir Bhatt, Fatemeh Valamanesh, Jerome Pulpytel, Rea Lo Dico, Aliby Baiyukha, Iman Al-Dybiat, Marc Pocard, Farzaneh Arefi-Khonsari, Massoud Mirshahi

Bioelectrics Publications

A low pressure plasma process based on plasma deposition has been used to develop a drug delivery strategy. In this study, a drug delivery system based on different layers of plasma co-polymerized Poly ε-caprolactone-Polyethylene glycol (PCL-PEG) co-polymers was deposited on biocompatible substrates. Cis-platinum (118 μgm/cm2) was used as an anti-cancer drug and incorporated for local delivery of the chemotherapeutic agent. The co-polymer layers and their interaction with cancer cells were analyzed by scanning electron microscopy. Our study showed that the plasma-PCL-PEG coated cellophane membranes, in which the drug, was included did not modify the flexibility and appearance of …


Plasma Activated Air Mediates Gene Transfer, Chelsea M. Edelblute Apr 2015

Plasma Activated Air Mediates Gene Transfer, Chelsea M. Edelblute

Biological Sciences Theses & Dissertations

Cold plasma is produced when strong applied electric fields accelerate free electrons, which dissociate, excite, or ionize gaseous molecules [1]. The deposition of ions from the plasma source is dependent on power generation, input gas composition, and gas flow rate. In the presence of reactive species, the membrane of eukaryotic cells is compromised allowing for otherwise impermeant molecules, such as DNA, to enter the inner-cell milieu [2].

The efficacy of a novel cold plasma reactor based on shielded sliding discharge for the delivery of plasmid DNA was assessed. The device is entirely non-contact, wherein the plasma never directly touches the …


Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok Jan 2014

Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok

Bioelectrics Publications

BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are …


Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang Apr 2012

Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang

Electrical & Computer Engineering Theses & Dissertations

Nanosecond pulsed electric field induced biological effects have been a focus of research interests since the new millennium. Promising biomedical applications, e.g. tumor treatment and wound healing, are emerging based on this principle. Although the exact mechanisms behind the nanosecond pulse-cell interactions are not completely understood yet, it is generally believed that charging along the cell membranes (including intracellular membranes) and formation of membrane pores trigger subsequent biological responses, and the number and quality of pores are responsible for the cell fate. The immediate charging response of a biological cell to a nanosecond pulsed electric field exposure relies on the …


A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin Jan 2012

A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin

Nursing Faculty Publications

Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, …


Dispersion Of Cytotoxic Properties Of Multi-Walled Carbon Nanotubes Suspended In Biological Solutions With Tween 80: Their Role In Enhancing Killing Effects Of Nanosecond Pulse Electric Fields On Tumor Cell Lines, Bhargava S. Kalluri Oct 2010

Dispersion Of Cytotoxic Properties Of Multi-Walled Carbon Nanotubes Suspended In Biological Solutions With Tween 80: Their Role In Enhancing Killing Effects Of Nanosecond Pulse Electric Fields On Tumor Cell Lines, Bhargava S. Kalluri

Biological Sciences Theses & Dissertations

The objective of this study was to determine whether multi-walled carbon nanotubes (MWCNTs) suspended in the surfactant Tween 80 give an additive killing effect on tumor cells when exposed to nsPEFs. In this study, MWCNTs were suspended in DMEM and RPMI with or without T80 (surfactant). The size distribution of MWCNTs suspended in these solutions was evaluated with a Delsa™ Nano Zeta potential and sub micro particle Size Analyzer and confirmed with microscopy. The cytotoxicity of MWCNTs dispersed in different concentrations of T80 was evaluated in PANC1 (Human pancreatic cancer cell line) and Jurkat cell lines (Human T-cell lymphoblast cell …


Human Osteoblast Proliferation In Culture Following A Nanosecond Pulsed Electric Field (Nspef), Leonard Joseph Carinci Jr. Apr 2010

Human Osteoblast Proliferation In Culture Following A Nanosecond Pulsed Electric Field (Nspef), Leonard Joseph Carinci Jr.

Biological Sciences Theses & Dissertations

Osteoblasts are mononucleate bone forming cells responsible for the deposition of new bone. Application of mechanical stress on bone reveals its ability to produce and release electric potentials across the cell membrane called piezoelectricity. The electric potentials produced in response to mechanical stress may have a direct correlation on osseous cells and the signaling pathways that regulate proliferation. Nanosecond pulsed electric fields (nsPEFs) are high intensity, ultrashort pulses which have the ability to maintain the integrity of the cell membrane by avoiding traditional electroporation. We delivered 8 nsPEFs (0.5 Hz) of a 25 kV/cm or 35 kV/cm electric field strength …