Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Biomedical Engineering and Bioengineering

Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff Dec 2016

Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Synthetic biology is providing novel tools to engineer cells and access the basis of their molecular information processing, including their communication channels based on chemical reactions and molecule exchange. Molecular communication is a discipline in communication engineering that studies these types of communications and ways to exploit them for novel purposes, such as the development of ubiquitous and heterogeneous communication networks to interconnect biological cells with nano and biotechnology-enabled devices, i.e., the Internet of Bio-Nano Things. One major problem in realizing these goals stands in the development of reliable techniques to control the engineered cells and their behavior from the …


Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin A. Jones, Thomas I. Harris, Paula F. Oliveira, Brianne E. Bell, Abdulrahman Alhabib, Randolph V. Lewis Nov 2016

Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin A. Jones, Thomas I. Harris, Paula F. Oliveira, Brianne E. Bell, Abdulrahman Alhabib, Randolph V. Lewis

Biology Faculty Publications

The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution …


Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez Oct 2016

Electro-Chemotactic Fields Induce Cooperative Movement Of Cns Cells, Shawn Mishra, Stephen Redenti, Maribel Vazquez

Publications and Research

Vision loss in adults with Age Related Macular Degeneration (AMD) is attributed to damage of retinal photoreceptor cells that initiate vision by absorbing light. Mouse models have suggested that transplantation of precursor cells may be a novel approach to restore vision. This project uses a combination of electrotactic and chemotactic stimuli to promote and guide CNS cell migration within a microdevice model.


Subcellular And In-Vivo Nano-Endoscopy, Surya Venkatasekhar Cheemalapati, John Winskas, Hao Wang, Karthik Konnaiyan, Arseny Zhdanov, Alison Roth, Swamy Rakesh Adapa, Andrew Deonarine, Rays H. Y. Jiang, Anna Pyayt Oct 2016

Subcellular And In-Vivo Nano-Endoscopy, Surya Venkatasekhar Cheemalapati, John Winskas, Hao Wang, Karthik Konnaiyan, Arseny Zhdanov, Alison Roth, Swamy Rakesh Adapa, Andrew Deonarine, Rays H. Y. Jiang, Anna Pyayt

Chemical, Biological and Materials Engineering Faculty Publications

Analysis of individual cells at the subcellular level is important for understanding diseases and accelerating drug discovery. Nanoscale endoscopes allow minimally invasive probing of individual cell interiors. Several such instruments have been presented previously, but they are either too complex to fabricate or require sophisticated external detectors because of low signal collection efficiency. Here we present a nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted signal for spectral analysis. Finite Difference Time Domain (FDTD) simulations have shown that with an optimized nanoendoscope taper profile, the light emission and collection was localized within ~100 nm. …


Tunable Nano-Delivery System For Cancer Treatment: A New Approach For Targeted Localized Drug Delivery, Rana Falahat Jun 2016

Tunable Nano-Delivery System For Cancer Treatment: A New Approach For Targeted Localized Drug Delivery, Rana Falahat

USF Tampa Graduate Theses and Dissertations

Localized drug delivery systems have been widely studied as potential replacements for conventional chemotherapy with the capability of providing sustained and controlled drug release in specific targeted sites. They offer numerous benefits over conventional chemotherapy such as enhancing the stability of embedded drugs and preserving their anticancer activity, providing sustained and controlled drug release in the tumor site, reducing toxicity and diminishing subsequent side effects, minimizing the drug loss, averting the need for frequent administrations, and minimizing the cost of therapy.

The aim of this study is to develop a localized drug delivery system with niosomes embedded in a chitosan …


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez May 2016

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 system, have …


Influence Of The 3d Microenvironment On Glioblastoma Migration And Drug Response, Ruth Marisol Herrera Perez Apr 2016

Influence Of The 3d Microenvironment On Glioblastoma Migration And Drug Response, Ruth Marisol Herrera Perez

Open Access Dissertations

Glioblastoma (GBM) is a highly invasive brain cancer characterized by poor prognosis. Despite significant efforts by the basic and clinical research community our understanding of GBM progression and recurrence has been incremental. Improvements in therapeutic response have been dismal, and GBM continues to be the deadliest tumor of the central nervous system, with patient average survival rate of 12 months. Synergistic relationships that the tumor cells establish with the brain microenvironment have been proven fundamental for successful tumor progression and maintenance. Yet, many in vitro GBM studies are performed in formats that fail to recapitulate the most essential component of …


Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr. Apr 2016

Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr.

Doctoral Dissertations

The National Cancer Institute and the American Cancer Society estimate that 1.6 million new cancer incidences and over half a million cancer related deaths occur annually [1][2]. Cancer the second most common cause of death in the United States [1], [2]. Although the causes of cancer can vary depending on cell type, all or almost all instances of cancer arise from a mutation or from an abnormal activation of the cellular genes that control cell growth and mitosis [3].

Treatment of a given cancer type depends on the subtype, stage and progression of the cancer. Varieties of cancer therapy include …


Non-Thermal Atmospheric-Pressure Plasma For Sterilization Of Surfaces And Biofilms, Johanna Ursula Neuber Apr 2016

Non-Thermal Atmospheric-Pressure Plasma For Sterilization Of Surfaces And Biofilms, Johanna Ursula Neuber

Electrical & Computer Engineering Theses & Dissertations

Bacterial resistance to antimicrobial methods is a critical issue in many fields of medicine. This work describes the studies performed to characterize and optimize the bacterial inactivation effects of a non-thermal atmospheric-pressure plasma brush and plasma jet on a laminate surface inoculated with Acinetobacter baumannii and Staphylococcus aureus, and a cultivated Enterococcus faecalis biofilm, respectively. These treatments are pilot studies for eventual application to surface sterilization in hospitals and root canal disinfection. To evaluate bacterial inactivation, after treatment and recovery, the bacterial colony forming units (CFUs) are counted. Several different methods are used to optimize the antimicrobial effect. For the …


Brain Tumor In A Dish: Glioma/Astrocyte Co-Cultures As A Model For In Vitro Studies, Erin Eickman, Christina Wilson, Srivatsan Kidambi Apr 2016

Brain Tumor In A Dish: Glioma/Astrocyte Co-Cultures As A Model For In Vitro Studies, Erin Eickman, Christina Wilson, Srivatsan Kidambi

UCARE Research Products

This study seeks to engineer an in vitro co-culture model to elucidate the role of glioma-astrocyte interactions on molecular changes in the tumor microenvironment. The use of patterned co-cultures created with polyelectrolyte multilayers and micromolding in capillaries will allow tthe investigation of cell-cell communication. This study will lead to better understanding of the role of healthy cells in cancer progression and potential treatment options.


Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez Mar 2016

Controlled Microfluidics To Examine Growth-Factor Induced Migration Of Neural Progenitors In The Drosophila Visual System, Cade Beck, Tanya Singh, Angela Farooqi, Tadmiri Venkatesh, Maribel Vazquez

Publications and Research

BACKGROUND:

The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision.

NEW METHOD:

The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and …


Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day Jan 2016

Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day

Research on Capitol Hill

Natural spider silks have long been recognized for their combination of incredible strength and elasticity. Spider silk is more elastic than nylon, tougher than Kevlar, and stronger than steel by weight. Due to an inability to farm spiders, much work has been done to produce spider silks in transgenic hosts for large -scale production. Our work was done using recombinant spider silk proteins produced in transgenic goats and the bacteria E. coli.

More recently spider silks have also been recognized for their biocompatibility and lack of immunogenicity. Spider silks' incredible strength and ability to be implanted safely within the body …


Fluorescent Nanocomposite Of Embedded Ceria Nanoparticles In Crosslinked Pva Electrospun Nanofibers, Nader Shehata, Soha Gaballah, Effat Samir, Aya Hamed, Marwa Saad Jan 2016

Fluorescent Nanocomposite Of Embedded Ceria Nanoparticles In Crosslinked Pva Electrospun Nanofibers, Nader Shehata, Soha Gaballah, Effat Samir, Aya Hamed, Marwa Saad

Biology Faculty Publications

This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria) nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of …


Ex-Vivo Slaughterhouse Porcine Crystalloid-Perfused Beating Heart Via Langendorff Method, Rahiemin Talukder Jan 2016

Ex-Vivo Slaughterhouse Porcine Crystalloid-Perfused Beating Heart Via Langendorff Method, Rahiemin Talukder

Electronic Theses and Dissertations

The objective of this study was to resuscitate isolated beating porcine hearts obtained from slaughterhouse swine for a minimum of 1 hour with a crystalloid buffer reperfusion instead of blood via an extracorporeal Langendorff apparatus. The isolated beating heart functions outside of the body under simulated physiologic conditions. Live functional anatomy was controlled under benchtop experimental settings. Porcine hearts (26 total) were topically cooled with saline. 300mL of 25°C cardioplegia with 20KU Streptokinase was preflushed via aortic root. WIT was less than 5 minutes. 1L 4°C cardioplegia was flushed antegrade with aortic cannula (Group 1) or coronary catheterization (Group 2). …


Accessible Bioprinting: Adaptation Of A Low-Cost 3d-Printer For Precise Cell Placement And Stem Cell Differentiation, John A. Reid, Peter A. Mollica, Garett D. Johnson, Roy C. Ogle, Robert D. Bruno, Patrick C. Sachs Jan 2016

Accessible Bioprinting: Adaptation Of A Low-Cost 3d-Printer For Precise Cell Placement And Stem Cell Differentiation, John A. Reid, Peter A. Mollica, Garett D. Johnson, Roy C. Ogle, Robert D. Bruno, Patrick C. Sachs

Medical Diagnostics & Translational Sciences Faculty Publications

The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive 'off-the-shelf' commercially available 3D printer. We also demonstrate via goal based …


Automated Solid-Substrate Cultivation Of The Anaerobic Bacterium Clostridium Thermocellum, Mathew J. Ruwaya Jan 2016

Automated Solid-Substrate Cultivation Of The Anaerobic Bacterium Clostridium Thermocellum, Mathew J. Ruwaya

Theses and Dissertations--Biosystems and Agricultural Engineering

The organism Clostridium thermocellum grows on cellulosic substrates and produces ethanol, acetate, lactate, formic acid, and CO2. The organic acids produced alter the growth environment in which the bacteria grows and ultimately inhibit bacterial growth. One method which has been used successfully to maintain the system at acceptable growth conditions is to intermittently flush out the spent media and metabolic products and replace with new fermentation media. Our goal was to design and build an automated system that will automatically flush the spent media from the growing culture and resupply new media without manual intervention. An automated control …