Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioelectrical and Neuroengineering

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Biomedical Engineering and Bioengineering

Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu Dec 2016

Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu

Boise State University Theses and Dissertations

Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves …


Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker Dec 2016

Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker

Graduate Theses and Dissertations

Following injury to the central nervous system, extracellular modulations are apparent at

the site of injury, often resulting in a glial scar. Astrocytes are mechanosensitive cells, which can create a neuroinhibitory extracellular environment in response to injury. The aim for this research was to gain a fundamental understanding of the affects a diffuse traumatic brain injury has on the astrocyte extracellular environment after injury. To accomplish this, a bioreactor culturing astrocytes in 3D constructs delivered 150G decelerations with 20% biaxial strain to mimic a traumatic brain injury. Experiments were designed to compare the potential effects of media type, number of …


Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar Nov 2016

Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar

Doctoral Dissertations

As assistive, wearable robotic devices are being developed to physically assist their users, it has become crucial to develop safe, reliable methods to coordinate the device with the intentions and motions of the wearer. This dissertation investigates the recognition of user intent during flexion and extension of the human torso in the sagittal plane to be used for control of an assistive exoskeleton for the human torso. A multi-sensor intent recognition approach is developed that combines information from surface electromyogram (sEMG) signals from the user’s muscles and inertial sensors mounted on the user’s body. Intent recognition is implemented by following …


A Biologically Plausible Supervised Learning Method For Spiking Neurons With Real-World Applications, Lilin Guo Nov 2016

A Biologically Plausible Supervised Learning Method For Spiking Neurons With Real-World Applications, Lilin Guo

FIU Electronic Theses and Dissertations

Learning is central to infusing intelligence to any biologically inspired system. This study introduces a novel Cross-Correlated Delay Shift (CCDS) learning method for spiking neurons with the ability to learn and reproduce arbitrary spike patterns in a supervised fashion with applicability tospatiotemporalinformation encoded at the precise timing of spikes. By integrating the cross-correlated term,axonaland synapse delays, the CCDS rule is proven to be both biologically plausible and computationally efficient. The proposed learning algorithm is evaluated in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification …


Gaussian Nonlinear Line Attractor For Learning Multidimensional Data, Theus H. Aspiras, Vijayan K. Asari, Wesam Sakla Oct 2016

Gaussian Nonlinear Line Attractor For Learning Multidimensional Data, Theus H. Aspiras, Vijayan K. Asari, Wesam Sakla

Vijayan K. Asari

The human brain’s ability to extract information from multidimensional data modeled by the Nonlinear Line Attractor (NLA), where nodes are connected by polynomial weight sets. Neuron connections in this architecture assumes complete connectivity with all other neurons, thus creating a huge web of connections. We envision that each neuron should be connected to a group of surrounding neurons with weighted connection strengths that reduces with proximity to the neuron. To develop the weighted NLA architecture, we use a Gaussian weighting strategy to model the proximity, which will also reduce the computation times significantly. Once all data has been trained in …


Elbow Patients’ Data Collection And Analysis: An Examination Of Electromyography Healing Patterns, Raneem Haddara Oct 2016

Elbow Patients’ Data Collection And Analysis: An Examination Of Electromyography Healing Patterns, Raneem Haddara

Electronic Thesis and Dissertation Repository

Musculoskeletal conditions are the most common cause of severe long-term pain and physical disability, accounting for the highest disability costs of about $17 billion yearly. To provide better rehabilitation tactics, the knowledge gap between injuries and their healing mechanisms needs to be addressed. The use of electromyography (EMG) is very popular in detecting neuromuscular diseases or nerve lesions; however, there is limited knowledge available for quantifying healing patterns of EMG in orthopedic patients who have injured their joints, muscles, or bones. In order to quantify the progress of orthopedic patients and assess their neuromuscular health and muscle synergy patterns, EMG …


Cortical Oscillations During A Lateral Balance Perturbation While Walking, Joseph Lee Oct 2016

Cortical Oscillations During A Lateral Balance Perturbation While Walking, Joseph Lee

Dissertations (1934 -)

The role of sensory systems in the cortical control of dynamic balance was examined using electroencephalography (EEG) recordings during balance perturbations while walking. Specifically, we examined the impact of sensory deficits on cortical oscillations using vibratory stimuli to suppress sensory feedback and by comparing cortical oscillations during balance perturbations while walking in people with sensory deficits associated with cervical myelopathy and neurologically intact controls. Balance during walking provides a rich framework for investigating cortical control using EEG during a functionally relevant task. While this approach is promising, substantial technical challenges remain in recording and processing EEG in the noisy, artifact …


A Proposal For A Wirelessly Powered, Implantable Pressure Sensor And Neural Stimulator For The Control Of Urinary Incontinence, Robert N. Tucker, Christopher J. Quinkert, Pedro P. Irazoqui Aug 2016

A Proposal For A Wirelessly Powered, Implantable Pressure Sensor And Neural Stimulator For The Control Of Urinary Incontinence, Robert N. Tucker, Christopher J. Quinkert, Pedro P. Irazoqui

The Summer Undergraduate Research Fellowship (SURF) Symposium

47 to 53 percent of women over the age of 20 suffer from urinary incontinence, often caused by childbirth-related damage to the pelvic nerve. This uncertainty of when bladder voiding will occur causes social anxiety and can compromise quality of life. This study explores one method to restore the ability to sense the need to urinate and prevent unwanted voiding. We propose a device to measure pressure due to bladder content as the difference between pressure in the bladder and pressure in the abdominal cavity. Integrated circuits, biocompatible packaging, and wireless radiofrequency powering allow for a fully implantable device to …


Cold Atmospheric Pressure Plasmas For Food Applications, Michael V. Lauria, Russell S. Brayfield Ii, Ronald G. Johnson, Allen L. Garner Aug 2016

Cold Atmospheric Pressure Plasmas For Food Applications, Michael V. Lauria, Russell S. Brayfield Ii, Ronald G. Johnson, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Successfully distributing shelf food requires treatment to eliminate microorganisms. Current chemical methods, such as chlorine wash, can alter food quality while only being effective for a limited time. Cold atmospheric pressure plasmas (CAPs) can eradicate the microorganisms responsible for food spoilage and foodborne illness. Optimizing CAP treatments requires understanding the reactive species generated and relating them to eradication efficiency. Recent studies have used optical emission spectroscopy (OES) to determine the species generated in a sealed package that would hold food. In this study,we supplement the OES results with optical absorption spectroscopy (OAS) using the same gases (helium, nitrogen, compressed air, …


Fabrication And Evaluation Of Magnetic Micro Actuators For Implantable Self-Clearing Glaucoma Drainage Devices, Haritha Ramadorai, Hyunsu Park, Hyowon Lee Aug 2016

Fabrication And Evaluation Of Magnetic Micro Actuators For Implantable Self-Clearing Glaucoma Drainage Devices, Haritha Ramadorai, Hyunsu Park, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

According to the World Health Organization, glaucoma is the second leading cause of blindness in the world. It currently affects more than 2.7 million people in the United States alone and over 79.6 million people worldwide are estimated to be inflicted by this debilitating disease by 2020. Glaucoma patients are often characterized with elevated intraocular pressure (IOP) and are treated with implantation of glaucoma drainage devices (GDD) to maintain optimum IOP. Although initially effective at delaying glaucoma progression, contemporary GDD often lead to numerous complications and only 50% of implanted devices remain functional after 5 years. Biofouling is seen to …


Pathway By Which Vagus Nerve Stimulation Of B Fibers Affects Heart Rate, Kelsey Wasilczuk, Matthew Ward, Pedro Irazoqui Aug 2016

Pathway By Which Vagus Nerve Stimulation Of B Fibers Affects Heart Rate, Kelsey Wasilczuk, Matthew Ward, Pedro Irazoqui

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heart failure (HF) affects over 5 million adults in the United States. Many HF patients have a high resting heart rate, which is correlated with a high mortality rate. In recent years, vagus nerve stimulation (VNS) has become an increasingly researched therapy to reduce the resting heart rate of HF patients. However, current dosage given during VNS is increased incrementally at the doctor’s office until side effects present themselves in a patient. In addition, the means by which the therapy works is not completely understood. To better understand the therapy’s mechanisms, the right cervical vagus nerve of several Long Evans …


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee Aug 2016

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term …


Automated Microscopy Platform For High-Throughput Analysis Of Cellular Characteristics, Hussam Ibrahim Jul 2016

Automated Microscopy Platform For High-Throughput Analysis Of Cellular Characteristics, Hussam Ibrahim

Physics: Student Scholarship & Creative Works

Existing microscopy platforms allow analysis post-hoc, but not in real time. This is an issue in the world of Bioengineering because you are limited to performing further analysis on specimen. The aim of my research was to design a sophisticated system whereby information can be exchanged between the software which acquires images and software that analyzes the images immediately after acquisition. In this system, images would be acquired by the microscope and analyzed by customized scripts (MATLAB, Mathworks) in real time. Specifically, MATLAB would wait for new images to be saved on the hard drive, import these images, and perform …


Characterizing Neurotransmitter Receptor Activation With A Perturbation Based Decomposition Method, Stephen Gregory Jue Jun 2016

Characterizing Neurotransmitter Receptor Activation With A Perturbation Based Decomposition Method, Stephen Gregory Jue

Master's Theses

The characterization of postsynaptic potentials, in terms of neurotransmitter receptor activation, is of clinical significance because information associated with receptor activation can be used in the diagnosis and study of neurological disorders. Single-unit recordings provide a method of measuring postsynaptic potentials in neurons using a microelectrode system, but yield no detailed information regarding the neurotransmitter receptors that contribute to the potential. To determine the types of neurotransmitter receptors that result in a compound postsynaptic potential from a microelectrode reading, decomposition of the potential is necessary. In this work, a perturbation-based decomposition method developed by R. Szlavik is evaluated for this …


Using Mathematical Modeling To Unmask The Concealed Nature Of Long Qt-3 Syndrome, Steven Poelzing, Amara Greer-Short, Seth H. Weinberg May 2016

Using Mathematical Modeling To Unmask The Concealed Nature Of Long Qt-3 Syndrome, Steven Poelzing, Amara Greer-Short, Seth H. Weinberg

Biology and Medicine Through Mathematics Conference

No abstract provided.


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Micellular Electrokinetic Chromatography For Studying Amyloid Beta Oligomer Membrane Affinity, Andrew Bryson May 2016

Micellular Electrokinetic Chromatography For Studying Amyloid Beta Oligomer Membrane Affinity, Andrew Bryson

Biomedical Engineering Undergraduate Honors Theses

Amyloid Beta (Aβ) was the major focus of this study. It is a peptide that is present in the brain with a high tendency to self-aggregate. When this protein aggregates, it forms oligomers and protofibrils which in turn are deposited as senile plaques in the brain. The reason for the concern with these plaques is their association with the neurological disorder Alzheimer’s disease. It has been found that the most dangerous oligomers are formed in a portion of the plasma membrane known as lipid rafts. The purpose of this study was to understand how micelles affect the aggregation properties of …


An In Vivo Study Of The Effects Of Perinatal Caffeine Exposure On Synaptic Efficacy In The Hippocampus Of Freely Moving Adult Rats, Jee Eun Park Apr 2016

An In Vivo Study Of The Effects Of Perinatal Caffeine Exposure On Synaptic Efficacy In The Hippocampus Of Freely Moving Adult Rats, Jee Eun Park

Senior Theses and Projects

The synapse from the perforant path to the dentate gyrus has been widely used successfully to demonstrate long-term potentiation, a cellular model underlying learning and memory. Caffeine is one of the most widely consumed psychoactive stimulants in the world. Caffeine consumption increases in alertness, improvements in motor skills, and neurological functions, and these effects have promoted its use throughout history. Although the many short term cognitive benefits of caffeine intake are well understood, the long term effects of caffeine exposure have been widely disputed. Despite this, it is estimated that over 80% of women continue to consume caffeine throughout pregnancy. …


Exploring Oculomotor Trends In Collegiate Athletes, Brett Whorley, Julie A. Honaker Apr 2016

Exploring Oculomotor Trends In Collegiate Athletes, Brett Whorley, Julie A. Honaker

UCARE Research Products

Collaborative efforts to improve athlete safety without significantly hindering the rules of the games aim to develop a novel system to better measure and diagnose concussions. Provided that common signs of concussions include blurred vision, distant gaze, and dizziness, the Dizziness and Balance Disorders Lab at UNL believes that the simple oculomotor exam studied in this project may be applied to this procedure. Within the broader goal to better understand the causes, signs, symptoms, and prognosis of concussions, researchers desired to further investigate the results of this oculomotor test. The aim was to identify and interpret correlations between collegiate athlete …


Analysis Of Breath-Holding Index As An Assessment Of Cerebrovascular Reactivity, Allison P. Porter, Madison Burger, Mohammed Alwatban, Benjamin Hage, Greg Bashford Apr 2016

Analysis Of Breath-Holding Index As An Assessment Of Cerebrovascular Reactivity, Allison P. Porter, Madison Burger, Mohammed Alwatban, Benjamin Hage, Greg Bashford

UCARE Research Products

Cerebrovascular reactivity (CVR) is a key factor in regulating blood flow into the brain, and a marker for vascular disease. If the brain's regulatory system is not working, a patient may be in serious trouble. Testing of CVR is one method of assessing the brain's regulatory capabilities. Transcranial Doppler ultrasound (TCD) is one tool to measure CVR. In this method, carbon dioxide in the blood is transiently increased (such as with the holding of breath), and the resulting blood flow in the brain is measured. In this study, we are going to measure the variability of the breathholding index.

Within …


Utilizing Brain-Computer Interfacing To Control Neuroprosthetic Devices, Cheyne J. Angy Apr 2016

Utilizing Brain-Computer Interfacing To Control Neuroprosthetic Devices, Cheyne J. Angy

Senior Honors Theses

Advances in neuroprosthetics in recent years have made an enormous impact on the quality of life for many people with disabilities, helping them regain the functionality of damaged or impaired abilities. One of the main hurdles to regaining full functionality regarding neuroprosthetics is the integration between the neural prosthetic device and the method in which the neural prosthetic device is controlled or manipulated to function correctly and efficiently. One of the most promising methods for integrating neural prosthetics to an efficient method of control is through Brian-computer Interfacing (BCI). With this method, the neuroprosthetic device is integrated into the human …


Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky Apr 2016

Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky

Dissertations (1934 -)

In this dissertation research project, we demonstrated the relationship between the structural and functional connections across the brain in stroke survivors. We used this information to predict arm function in stroke survivors, suggesting that the tools developed through this research will be useful for prescribing individualized rehabilitation strategies in people after stroke. Current clinical methods for rehabilitating sensorimotor function after stroke are not based on the locus of injury in the brain. Instead, therapies are generalized, treating symptoms such as weakness and spasticity. This results in outcomes that are highly variable, with severity of impairment immediately following stroke as the …


Closed-Loop Afferent Nerve Electrical Stimulation For Rehabilitation Of Hand Function In Subjects With Incomplete Spinal Cord Injury, Christopher J. Schildt Jan 2016

Closed-Loop Afferent Nerve Electrical Stimulation For Rehabilitation Of Hand Function In Subjects With Incomplete Spinal Cord Injury, Christopher J. Schildt

Theses and Dissertations--Biomedical Engineering

Peripheral nerve stimulation (PNS) is commonly used to promote use-dependent cortical plasticity for rehabilitation of motor function in spinal cord injury. Pairing transcranial magnetic stimulation (TMS) with PNS has been shown to increase motor evoked potentials most when the two stimuli are timed to arrive in the cortex simultaneously. This suggests that a mechanism of timing-dependent plasticity (TDP) may be a more effective method of promoting motor rehabilitation. The following thesis is the result of applying a brain-computer interface to apply PNS in closed-loop simultaneously to movement intention onset as measured by EEG of the sensorimotor cortex to test whether …


Cytosolic Dna Sensor Upregulation Accompanies Dna Electrotransfer In B16.F10 Melanoma Cells, Katarina Znidar, Masa Bosnjak, Maja Cemazar, Loree C. Heller Jan 2016

Cytosolic Dna Sensor Upregulation Accompanies Dna Electrotransfer In B16.F10 Melanoma Cells, Katarina Znidar, Masa Bosnjak, Maja Cemazar, Loree C. Heller

Bioelectrics Publications

In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFN β mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16. F10 …


Computational Assessment Of Neural Probe And Brain Tissue Interface Under Transient Motion, Michael Polanco, Sebastian Bawab, Hangsoon Yoon Jan 2016

Computational Assessment Of Neural Probe And Brain Tissue Interface Under Transient Motion, Michael Polanco, Sebastian Bawab, Hangsoon Yoon

Mechanical & Aerospace Engineering Faculty Publications

The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial …


Noninvasive Measurement Of Electrical Events Associated With A Single Chlorovirus Infection Of A Microalgal Cell, Seung-Woo Lee, Eun-Hee Lee, Gerhard Thiel, James L. Van Etten, Ravi Saraf Jan 2016

Noninvasive Measurement Of Electrical Events Associated With A Single Chlorovirus Infection Of A Microalgal Cell, Seung-Woo Lee, Eun-Hee Lee, Gerhard Thiel, James L. Van Etten, Ravi Saraf

Department of Chemical and Biomolecular Engineering: Faculty Publications

Chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains a viral-encoded K+ channel imbedded in its internal membrane, which triggers host plasma membrane depolarization during virus infection. This early stage of infection was monitored at high resolution by recording the cell membrane depolarization of a single Chlorella cell during infection by a single PBCV-1 particle. The measurement was achieved by depositing the cells onto a network of one-dimensional necklaces of Au nanoparticles, which spanned two electrodes 70 μm apart. The nanoparticle necklace array has been shown to behave as a single-electron device at room temperature. The resulting electrochemical field-effect transistor …


Intracellular Ros Mediates Gas Plasma-Facilitated Cellular Transfection In 2d And 3d Cultures, Dehui Xu, Biqing Wang, Yujing Xu, Zeyu Chen, Qinjie Cui, Yanjie Yang, Hailan Chen, Michael G. Kong Jan 2016

Intracellular Ros Mediates Gas Plasma-Facilitated Cellular Transfection In 2d And 3d Cultures, Dehui Xu, Biqing Wang, Yujing Xu, Zeyu Chen, Qinjie Cui, Yanjie Yang, Hailan Chen, Michael G. Kong

Bioelectrics Publications

This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In …


Electrophysiology Of Basal Ganglia (Bg) Circuitry And Dystonia As A Model Of Motor Control Dysfunction, Deepak Kumbhare Jan 2016

Electrophysiology Of Basal Ganglia (Bg) Circuitry And Dystonia As A Model Of Motor Control Dysfunction, Deepak Kumbhare

Theses and Dissertations

The basal ganglia (BG) is a complex set of heavily interconnected nuclei located in the central part of the brain that receives inputs from the several areas of the cortex and projects via the thalamus back to the prefrontal and motor cortical areas. Despite playing a significant part in multiple brain functions, the physiology of the BG and associated disorders like dystonia remain poorly understood. Dystonia is a devastating condition characterized by ineffective, twisting movements, prolonged co-contractions and contorted postures. Evidences suggest that it occurs due to abnormal discharge patterning in BG-thalamocortocal (BGTC) circuitry. The central purpose of this study …