Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Structures and Materials

Senior Design - Hybrid Rocket Conceptual Design, Hardeo Chin Nov 2016

Senior Design - Hybrid Rocket Conceptual Design, Hardeo Chin

Hardeo Chin

Hybrid rockets utilize rocket motors which contain both liquid and solid propellant. They provide numerous benefits compared to solid and liquid rockets such as being mechanically simpler, having denser fuels, and providing higher specific impulse. Generally, the oxidizer is liquid and fuel is solid because solid oxidizers are dangerous and are lower performing than their liquid counterparts. Hybrid systems avoid the significant hazards of manufacturing, shipping, and handling that solid rocket motors possess. The conceptual design report herein separately assesses the structural and propulsive needs for a mid-power rocket with a G-motor


Constructal Alkaline Membrane Fuel Cell (Amfc) Design, E. M. Sommer, J. V. C. Vargas, Lauber De Souza Martins, J. C. Ordonez Jan 2016

Constructal Alkaline Membrane Fuel Cell (Amfc) Design, E. M. Sommer, J. V. C. Vargas, Lauber De Souza Martins, J. C. Ordonez

Faculty Publications

This paper introduces a structured procedure to optimize the internal structure (relative sizes, spacing) and external shape (aspect ratios) of a single alkaline membrane fuel cell so that net power is maximized. The optimization of flow geometry is conducted for the smallest (elemental) level of a fuel cell stack, i.e., the single alkaline membrane fuel cell, which is modeled as a unidirectional flow system. The polarization curve, total and net power, and efficiency are obtained as functions of temperature, pressure, electrolyte solution concentration (KOH), geometry and operating parameters. The optimization is subjected to fixed total volume. There are two levels …