Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Determination Of Human Powered Helicopter Stability Characteristics Using Multi-Body System Simulation Techniques, Sean M. Brown Nov 2012

Determination Of Human Powered Helicopter Stability Characteristics Using Multi-Body System Simulation Techniques, Sean M. Brown

Master's Theses

Multi-Body System Simulation combined with System Identification was developed as a method for determining the stability characteristics of a human powered helicopter(HPH) configurations. HPH stability remains a key component for meeting competition requirements, but has not been properly treated. Traditional helicopter dynamic analysis is not suited to the HPH due to its low rotation speeds and light weight. Multi-Body System Simulation is able to generate dynamic response data for any HPH configuration. System identification and linear stability theory are used to determine the stability characteristics from the dynamic response. This thesis focuses on the method development and doesn't present any …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …