Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry Mar 2020

Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry

Theses and Dissertations

The Global Navigation Satellite System continues to become deeply em-bedded within modern civilization, and is depended on for confident, accurate navigation information. High precision position and timing accuracy is typically achieved using differential processing, however these systems provide limited compensation for distortions caused by multi-path or faulty satellite hardware. Signal Quality Monitoring (SQM) aims to provide confidence in a receivers Position, Navigation, and Timing solution and to offer timely warnings in the event that signal conditions degrade to unsafe levels. The methods presented in this document focus on implementing effective SQM using low-cost Commercial Off-the-Shelf equipment, a Software Defined Radio, …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Verifying And Improving A Flight Reference System's Performance, Loren E. Myers Mar 2020

Verifying And Improving A Flight Reference System's Performance, Loren E. Myers

Theses and Dissertations

The 746th Test Squadron (746 TS) at Holloman AFB, NM operates the Ultra High Accuracy Reference System (UHARS) as part of its mission positioning and navigation test. This research presents a method for verifying the performance of a flight reference system using a Delta-Position velocity derived from radio navigation positioning measurements. The algorithm presented may utilize Global Positioning System (GPS) or the Locata ground based positioning system. In the latter case, Locata provides a velocity truth independent from GPS. The accuracy of Locata and GPS are assessed and UHARS velocity measurements are characterized both in nominal and GPS denied applications.


Improving Aeromagnetic Calibration Using Artificial Neural Networks, Mitchell C. Hezel Mar 2020

Improving Aeromagnetic Calibration Using Artificial Neural Networks, Mitchell C. Hezel

Theses and Dissertations

The Global Positioning System (GPS) has proven itself to be the single most accurate positioning system available, and no navigation suite is found without a GPS receiver. Even basic GPS receivers found in most smartphones can easily provide high quality positioning information at any time. Even with its superb performance, GPS is prone to jamming and spoofing, and many platforms requiring accurate positioning information are in dire need of other navigation solutions to compensate in the event of an outage, be the cause hostile or natural. Indeed, there has been a large push to achieve an alternative navigation capability which …


Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson Mar 2020

Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson

Theses and Dissertations

While Convolutional Neural Networks (CNNs) can estimate frame-to-frame (F2F) motion even with monocular images, additional inputs can improve Visual Odometry (VO) predictions. In this thesis, a FlowNetS-based [1] CNN architecture estimates VO using sequential images from the KITTI Odometry dataset [2]. For each of three output types (full six degrees of freedom (6-DoF), Cartesian translation, and transitional scale), a baseline network with only image pair input is compared with a nearly identical architecture that is also given an additional rotation estimate such as from an Inertial Navigation System (INS). The inertially-aided networks show an order of magnitude improvement over the …


Reliable Navigation For Suas In Complex Indoor Environments, Andrew J. Fabian Jan 2020

Reliable Navigation For Suas In Complex Indoor Environments, Andrew J. Fabian

Theses and Dissertations

Indoor environments are a particular challenge for Unmanned Aerial Vehicles (UAVs). Effective navigation through these GPS-denied environments require alternative localization systems, as well as methods of sensing and avoiding obstacles while remaining on-task. Additionally, the relatively small clearances and human presence characteristic of indoor spaces necessitates a higher level of precision and adaptability than is common in traditional UAV flight planning and execution. This research blends the optimization of individual technologies, such as state estimation and environmental sensing, with system integration and high-level operational planning.

The combination of AprilTag visual markers, multi-camera Visual Odometry, and IMU data can be used …


Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani Jan 2020

Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani

Faculty Publications

Instances of spoofing and jamming of global navigation satellite systems (GNSSs) have emphasized the need for alternative navigation methods. Aerial navigation by magnetic map matching has been demonstrated as a viable GNSS‐alternative navigation technique. Flight test demonstrations have achieved accuracies of tens of meters over hour‐long flights, but these flights required accurate magnetic maps which are not always available. Magnetic map availability and resolution vary widely around the globe. Removing the dependency on prior survey maps extends the benefits of aerial magnetic navigation methods to small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are especially undersampled or …