Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Cubesat Reaction Wheel Attitude Control Platform System Architecture, Justin Hartland Jan 2024

Cubesat Reaction Wheel Attitude Control Platform System Architecture, Justin Hartland

Beyond: Undergraduate Research Journal

In the classroom, physics behind spacecraft attitude dynamics and controls is abstract and difficult to comprehend. It is common that students struggle to develop the connection between the math they learn and how it can be applied in the real world. The goal of this project is to design and manufacture a 1U, 3U, and 6U CubeSat testbed for autonomous control systems utilizing reaction wheels. The testbed will include three separate reaction wheels each mounted on its own respective axis to control the attitude in 3 degrees of freedom. The end goal of the CubeSat Control Platform is to be …


Dual Quaternion Relative Dynamics For Gravity Recovery Missions, Ryan Kinzie, Riccardo Bevilacqua, Seo Dongeun Jan 2023

Dual Quaternion Relative Dynamics For Gravity Recovery Missions, Ryan Kinzie, Riccardo Bevilacqua, Seo Dongeun

Student Works

A dual quaternion modeling approach is compared to traditional modeling methods for formation flying spacecraft utilized for gravity recovery missions. A modeling method that has traditionally been used for gravity recovery missions is presented which models the motion of two formation flying spacecraft and a test mass. This is followed by the dual quaternion-based formulation for the equations of motion of the twelve degree-of-freedom coupled relative dynamics of formation flying spacecraft and a test mass. Lastly, utilizing data products from the Gravity Recovery and Climate Experiment Follow-On mission, a comparison of these two modeling methods is presented which proves the …


Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa Dec 2021

Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa

Master's Theses

A light curve is a plot of brightness versus time of an object. Light curves are dependent on orbit, attitude, surface area, size, and shape of the observed object. Using light curve data, several analysis methods have been developed to derive these parameters. These parameters can be used for tracking orbital debris, monitoring satellite health, and determining the mission of an unknown spacecraft.

This paper discusses the development, verification, and utilization of a tool that simulates light curve data. This tool models ground-based observations, space-based observations, self-shadowing geometry, tumbling debris, and controlled spacecraft. The main output from the tool is …


Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen Aug 2021

Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen

Master's Theses

Low-thrust interplanetary spacecraft trajectory optimization poses a uniquely difficult problem to solve because of the inherent nonlinearities of the dynamics and constraints as well as the large size of the search space of possible solutions. Tools currently exist that optimize low-thrust interplanetary trajectories, but these tools are rarely openly available to the public, and when they are available they require multiple interfaces between multiple different packages. The goal of this work is to present a new piece of low-thrust interplanetary spacecraft trajectory optimization software that is open-source and entirely self-contained so that more people can have access to the ability …


Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri Jun 2018

Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri

Honors Theses

In any spacecraft, there are several systems that must work simultaneously to ensure a safe mission. One critical system is the ‘avionics’ system, which is comprised of all of the electronic controls on-board the spacecraft, as well as radio links to other craft and ground stations. These systems are present for both manned or unmanned spacecraft.

Throughout the history of spaceflight, there have been several disasters related to avionics failures. To make these systems safer and more reliable, two main strategies have been adopted. The first, more established approach is through use of fault-tolerant components, which can operate under a …


Control Of A Spacecraft Using Mixed Momentum Exchange Devices, Blake J. Currie Oct 2014

Control Of A Spacecraft Using Mixed Momentum Exchange Devices, Blake J. Currie

Master's Theses

Hardware configurations, a control law, and a steering law are developed for a mixed hardware spacecraft that uses both control moment gyros and reaction wheels. Replacing one or more gyros in a spacecraft with a reaction wheel has potential for cost savings while still achieving much greater performance than using reaction wheels alone. Several simulated tests are run to compare the performance to a traditional all reaction wheel or all control moment gyro spacecraft, including analysis of failure modes and singular configurations. The mixed system performed similarly to all gyro systems, responding within 6% of the gyro system’s time for …


Modification Of The Cal Poly Spacecraft Simulator System For Robust Control Law Verification, Tomoyuki Kato Jun 2014

Modification Of The Cal Poly Spacecraft Simulator System For Robust Control Law Verification, Tomoyuki Kato

Master's Theses

The Cal Poly Spacecraft Dynamics Simulator, also known as the Pyramidal Reaction Wheel Platform (PRWP), is an air-bearing four reaction wheel spacecraft simulator designed to simulate the low-gravity, frictionless condition of the space environment and to test and validate spacecraft attitude control hardware and control laws through real-time motion tests. The PRWP system was modified to the new Mk.III configuration, which adopted the MATLAB xPC kernel for better real-time hardware control. Also the Litton LN-200 IMU was integrated onto the PRWP and replaced the previous attitude sensor. Through the comparison of various control laws through motion tests the Mk.III configuration …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Modeling And Control Of Space Vehicles With Fuel Slosh Dynamics, Mahmut Reyhanoglu Feb 2011

Modeling And Control Of Space Vehicles With Fuel Slosh Dynamics, Mahmut Reyhanoglu

Mahmut Reyhanoglu

"Ever since the launch of the early high-efficiency rockets, controlling liquid fuel slosh within a launch vehicle has been a major design concern. Moreover, with today's large and complex spacecraft, a substantial mass of fuel is necessary to place them into orbit and to perform orbital maneuvers."--From the book's introduction.


Adaptive Control Applied To The Cal Poly Spacecraft Attitude Dynamics Simulator, Matthew C. Downs Feb 2010

Adaptive Control Applied To The Cal Poly Spacecraft Attitude Dynamics Simulator, Matthew C. Downs

Master's Theses

The goal of this thesis is to use the Cal Poly Spacecraft Attitude Dynamics Simulator to provide proof of concept of two adaptive control theories developed by former Cal Poly students: Nonlinear Direct Model Reference Adaptive Control and Adaptive Output Feedback Control. The Spacecraft Attitude Dynamics Simulator is a student-built air bearing spacecraft simulator controlled by four reaction wheels in a pyramidal arrangement. Tests were performed to determine the effectiveness of the two adaptive control theories under nominal operating conditions, a “plug-and-play” spacecraft scenario, and under simulated actuator damage. Proof of concept of the adaptive control theories applied to attitude …