Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Aerospace Vehicle Navigation And Control System Comprising Terrestrial Illumination Matching Module For Determining Aerospace Vehicle Position And Attitude, Liberty M. Shockley, Robert A. Bettinger Jan 2024

Aerospace Vehicle Navigation And Control System Comprising Terrestrial Illumination Matching Module For Determining Aerospace Vehicle Position And Attitude, Liberty M. Shockley, Robert A. Bettinger

AFIT Patents

The present invention relates to an aerospace vehicle navigation and control system comprising a terrestrial illumination matching module for determining spacecraft position and attitude. The method permits aerospace vehicle position and attitude determinations using terrestrial lights using an Earth-pointing camera without the need of a dedicated sensor to track stars, the sun, or the horizon. Thus, a module for making such determinations can easily and inexpensively be made onboard an aerospace vehicle if an Earth-pointing sensor, such as a camera, is present.


Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng Dec 2023

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng

All Theses

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods, such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these methods use iterative safety checks to guarantee the safety of the system, which can become quite complex. The navigation problem can also be solved in feedback form using potential field methods. Navigation function, a class of potential field methods, is an analytical control design to give almost everywhere convergence properties, but under certain topological constraints and …


Missile Modeling And Simulation Of Nominal And Abnormal Scenarios Resulting From External Damage, James Manuel Floyd Iii Jan 2023

Missile Modeling And Simulation Of Nominal And Abnormal Scenarios Resulting From External Damage, James Manuel Floyd Iii

Graduate Theses, Dissertations, and Problem Reports

This thesis presents the development of a six-degree-of-freedom flight simulation environment for missiles and the application thereof to investigate the flight performance of missiles when exposed to external damage. The simulation environment was designed to provide a realistic representation of missile flight dynamics including aerodynamic effects, flight control systems, and self-guidance. The simulation environment was designed to be modular, expandable, and include realistic models of external damage to the missile body obtained by adversarial counteraction.

The primary objective of this research was to examine missile flight performance when subjected to unspecified external damage, including changes in trajectory, stability, and controllability, …


Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic Jan 2021

Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic

Graduate Theses, Dissertations, and Problem Reports

Accurate localization is a critical component of any robotic system. During planetary missions, these systems are often limited by energy sources and slow spacecraft computers. Using proprioceptive localization (e.g., using an inertial measurement unit and wheel encoders) without external aiding is insufficient for accurate localization. This is mainly due to the integrated and unbounded errors of the inertial navigation solutions and the drifted position information from wheel encoders caused by wheel slippage. For this reason, planetary rovers often utilize exteroceptive (e.g., vision-based) sensors. On the one hand, localization with proprioceptive sensors is straightforward, computationally efficient, and continuous. On the other …


Digitalization Of Educational And Methodological Support For The Training Of Aviation Dispatchers, Zair Ziyaevich Shamsiev Jan 2021

Digitalization Of Educational And Methodological Support For The Training Of Aviation Dispatchers, Zair Ziyaevich Shamsiev

International Journal of Aviation, Aeronautics, and Aerospace

The tasks of improving the educational process of training civil aviation dispatchers on the basis of the development and implementation of digital teaching aids are considered. Legislative and regulatory documents are accepted as an object of digitalization. The end result of the research is expressed in the provision of the educational process with a special electronic educational complex, which has the functions of providing the necessary information and conducting practical exercises to deepen, consolidate and control knowledge in the field of aviation documents.


Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson Mar 2020

Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson

Theses and Dissertations

While Convolutional Neural Networks (CNNs) can estimate frame-to-frame (F2F) motion even with monocular images, additional inputs can improve Visual Odometry (VO) predictions. In this thesis, a FlowNetS-based [1] CNN architecture estimates VO using sequential images from the KITTI Odometry dataset [2]. For each of three output types (full six degrees of freedom (6-DoF), Cartesian translation, and transitional scale), a baseline network with only image pair input is compared with a nearly identical architecture that is also given an additional rotation estimate such as from an Inertial Navigation System (INS). The inertially-aided networks show an order of magnitude improvement over the …


Navigational Feasibility Of Flyby / Impact Missions To Interstellar Objects, Declan Moore Mages Dec 2019

Navigational Feasibility Of Flyby / Impact Missions To Interstellar Objects, Declan Moore Mages

Master's Theses

In October 2017, the first interstellar object, designated 1I/2017 U1 and more commonly referred to as Oumuamua, was detected passing through our solar system by the Pan-STARRS telescope, followed recently by the detection of 2I/Borisov in August 2019. These detections came much sooner than thought possible, and have redefined our understanding of the population of interstellar objects. With the construction of the next generation of powerful observatories, future detections are estimated to occur as frequently as two per year, and while there is significant scientific understanding to be gained from observing these objects remotely, a spacecraft sent to intercept one …


Algorithm For Geodetic Positioning Based On Angle-Of-Arrival Of Automatic Dependent Surveillance-Broadcasts, Richard Allen Gross Apr 2019

Algorithm For Geodetic Positioning Based On Angle-Of-Arrival Of Automatic Dependent Surveillance-Broadcasts, Richard Allen Gross

Masters Theses

This paper develops a non-precision, three-dimensional, geodetic positioning algorithm for airborne vehicles. The algorithm leverages the proliferation of Automatic Dependent Surveillance – Broadcast (ADS-B) equipped aircraft, utilizing them as airborne navigation aids to generate an RF Angle-of-Arrival (AOA) and Angle-of-Elevation (AOE) based geodetic position. The resulting geodetic position can serve as a redundant navigation system for use during locally limited Global Navigation Satellite System (GNSS) availability, be used to validate on-board satellite navigation systems in an effort to detect local spoofing attempts, and be used to validate ADS-B position reports.

The navigation algorithm is an implementation of an Extended Kalman …


Magnetic Field Aided Indoor Navigation, William F. Storms Feb 2019

Magnetic Field Aided Indoor Navigation, William F. Storms

Theses and Dissertations

This research effort examines inertial navigation system aiding using magnetic field intensity data and a Kalman filter in an indoor environment. Many current aiding methods do not work well in an indoor environment, like aiding using the Global Positioning System. The method presented in this research uses magnetic field intensity data from a three-axis magnetometer in order to estimate position using a maximum – likelihood approach. The position measurements are then combined with a motion model using a Kalman filter. The magnetic field navigation algorithm is tested using a combination of simulated and real measurements. These tests are conducted using …


Navigation Using Vector And Tensor Measurements Of The Earth's Magnetic Anomaly Field, Lauren A. Mount Mar 2018

Navigation Using Vector And Tensor Measurements Of The Earth's Magnetic Anomaly Field, Lauren A. Mount

Theses and Dissertations

This research explores the viability of using a navigation system that relies on measurements of the magnetic anomaly field as an alternative to GPS navigation. Previous research has been conducted on developing a navigation system using the intensity of the Earth's magnetic anomaly field as an alternative signal. This research focuses on using vector and tensor measurements, as opposed to scalar measurements of the anomaly field, as a means of obtaining accurate position and orientation solutions. This paper presents two navigation systems. The first uses an Extended Kalman Filter (EKF) with vector measurements of the magnetic anomaly field to aid …


Instrumentation And Inertial Navigation Systems Design For Tensegrity Robot Implementations, Scott Edward Harper Jan 2018

Instrumentation And Inertial Navigation Systems Design For Tensegrity Robot Implementations, Scott Edward Harper

Graduate Theses, Dissertations, and Problem Reports

One of the major challenges faced when developing missions for the exploration of planetary bodies is the risk these terrains pose on the science platform when using a traditional lander or wheeled rover. One means of developing platforms to traverse these harsh terrains is to utilize mobility systems comprised of tensegrity structures. These structures have the capacity to distribute loads across a network of axially loaded members such that they can be constructed in a very lightweight manner and morph their geometries when required. In literature, there has been significant progress in simulated environments to utilize tensegrity structures as mobility …


Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa Jun 2016

Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa

Master's Theses

Due to mass and volume constraints on planetary missions, the development of control techniques that do not require fuel are of big interest. For those planets that have a dense enough atmosphere, aerodynamic drag can play an important role. The use of atmospheric differential drag for formation keeping was first proposed by Carolina L. Leonard in 1986, and has been proven to work in Earth atmosphere by many missions. Moreover, atmospheric drag has been used in the Mars atmosphere as aerobraking technique to decelerate landing vehicles, and to circularize the orbit of the spacecraft. Still, no literature was available related …


Visual-Ins Using A Human Operator And Converted Measurements, Turner J. Montgomery Mar 2016

Visual-Ins Using A Human Operator And Converted Measurements, Turner J. Montgomery

Theses and Dissertations

A method human operated INS aiding is explored in which the pilot identifies and tracks a ground feature of unknown position over a short measurement epoch using an E/O sensor. One then refers to Visual-INS. In contrast to current research trends, a human operator is entrusted with visually tracking the ground feature. In addition, a less conventional measurement linearization technique is applied to generate “converted” measurements. A linear regression algorithm is then applied to the converted measurements providing an estimate of the INS horizontal velocity error and accelerometer biases. At the completion of the measurement epoch, the INS is corrected …


Error Characterization Of Flight Trajectories Reconstructed Using Structure From Motion, Daniel C. Alix Mar 2015

Error Characterization Of Flight Trajectories Reconstructed Using Structure From Motion, Daniel C. Alix

Theses and Dissertations

This research effort assessed the accuracy of Structure from Motion (SFM) algorithms in replicating aircraft fight trajectories. Structure from Motion techniques can be used to estimate aircraft trajectory by determining the position and pose of an aircraft mounted camera from a sequential series of images taken during flight. An algorithm is proposed and implemented that successfully reconstructed aircraft trajectory using only a known starting position and a sequential series of images. The error in and reliability of the algorithm was found to be a function of image resolution as well as the amount of overlap and angular separation between sequential …


Navigation Constellation Design Using A Multi-Objective Genetic Algorithm, Heather C. Diniz Mar 2015

Navigation Constellation Design Using A Multi-Objective Genetic Algorithm, Heather C. Diniz

Theses and Dissertations

In satellite constellation design, performance and cost of the system drive the design process. The Global Positioning System (GPS) constellation is currently used to provide positioning and timing worldwide. As satellite technology has improved over the years, the cost to develop and maintain the satellites has increased. Using a constellation design tool, it is possible to analyze the tradeoffs of new navigation constellation designs (Pareto fronts) that illustrate the tradeoffs between position dilution of precision (PDOP) and system cost. This thesis utilized Satellite Tool Kit (STK) to calculate PDOP values of navigation constellations, and the Unmanned Spacecraft Cost Model (USCM) …


Hot Air Balloon Navigation, Dustin Blackwell Dec 2010

Hot Air Balloon Navigation, Dustin Blackwell

Aerospace Engineering

This report describes a program used for navigating a hot air balloon. The program, Balloon_Trip, was written using MATLAB and gives a flight path to follow from a start position to an end position. Balloon_Trip calculates the flight path by taking in wind conditions and then flying through these different winds so as to steer the hot air balloon. The program calculates the flight path by taking into consideration at all times how the wind will propel the balloon while it is rising or falling in elevation. It then takes the most direct and least complicated, if not fastest, …


An Integrity Framework For Image-Based Navigation Systems, Craig D. Larson Jun 2010

An Integrity Framework For Image-Based Navigation Systems, Craig D. Larson

Theses and Dissertations

This work first examines fundamental differences between measurement models established for GPS and those of proposed image-based navigation systems. In contrast to single value per satellite GPS pseudorange measurements, image measurements are inherently angle-based and represent pixel coordinate pairs for each mapped target. Thus, in the image-based case, special consideration must be given to the units of the transformations between the states and measurements, and also to the fact that multiple rows of the observation matrix relate to particular error states. An algorithm is developed to instantiate a framework for image-based integrity analogous to that of GPS RAIM. The algorithm …


Improved Mathematical Modeling For Gps Based Navigation, Salvatore Nardi Mar 1998

Improved Mathematical Modeling For Gps Based Navigation, Salvatore Nardi

Theses and Dissertations

This thesis is concerned with the development of new closed form GPS position determination algorithms that work in the presence of pseudorange measurement noise. The mathematical derivation of two closed form algorithms, based on stochastic modeling and estimation techniques, is presented. The algorithms provide an estimate of the GPS solution parameters (viz., the user position and the user clock bias) as well as the estimation error covariance. The experimental results are analyzed by comparison to the baseline results from the conventional Iterative Least Squares (ILS) algorithm. In typical GPS scenarios, the closed form algorithms are extremely sensitive to noise, making …


Pseudorandom Code Generation For Communication And Navigation System Applications, John F. Brendle Jr. Dec 1997

Pseudorandom Code Generation For Communication And Navigation System Applications, John F. Brendle Jr.

Theses and Dissertations

This research project investigated the design, construction and evaluation of a pseudorandom code generator for communication and navigation system applications. These types of codes include spreading codes, Gold codes, Jet Propulsion Laboratory (JPL) ranging codes, syncopated codes, and nonlinear codes. Such waveforms are typically used in communication and navigation system applications. The code generator uses the Stanford Telecom STEL-1032 Pseudorandom Number (PRN) coder. A coder interface was designed and constructed for manual data entry to the registers of the PRN coder. The code generator is capable of independently clocking and generating all possible codes with lengths up to 4,294,967,295 bits. …