Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins Feb 2019

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins

Kevin A. Adkins, PhD

The Federal Aviation Administration (FAA) has put forth a set of regulations (Part 107) that govern small unmanned aerial system (sUAS) operations. These regulations restrict unmanned aircraft (UA) from flying over people and their operation to within visual line of sight (VLOS). However, as new applications for unmanned aerial systems (UAS) are discovered, their capabilities improve, and regulations evolve, there is an increasing desire to undertake urban operations, such as urban air mobility, package delivery, infrastructure inspection, and surveillance. This built environment poses new weather hazards that include enhanced wind shear and turbulence. The smaller physical dimensions, lower mass and …


Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins Jan 2019

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins

International Journal of Aviation, Aeronautics, and Aerospace

The Federal Aviation Administration (FAA) has put forth a set of regulations (Part 107) that govern small unmanned aerial system (sUAS) operations. These regulations restrict unmanned aircraft (UA) from flying over people and their operation to within visual line of sight (VLOS). However, as new applications for unmanned aerial systems (UAS) are discovered, their capabilities improve, and regulations evolve, there is an increasing desire to undertake urban operations, such as urban air mobility, package delivery, infrastructure inspection, and surveillance. This built environment poses new weather hazards that include enhanced wind shear and turbulence. The smaller physical dimensions, lower mass and …


Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar Jan 2018

Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar

Theses and Dissertations--Mechanical Engineering

We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies.