Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 37

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Synthetic Jet Actuator-Based Aircraft Tracking Using A Continuous Robust Nonlinear Control Strategy, N. Ramos-Pedroza, W. Mackunis, M. Reyhanoglu Dec 2017

Synthetic Jet Actuator-Based Aircraft Tracking Using A Continuous Robust Nonlinear Control Strategy, N. Ramos-Pedroza, W. Mackunis, M. Reyhanoglu

Publications

A robust nonlinear control law that achieves trajectory tracking control for unmanned aerial vehicles (UAVs) equipped with synthetic jet actuators (SJAs) is presented in this paper. A key challenge in the control design is that the dynamic characteristics of SJAs are nonlinear and contain parametric uncertainty. The challenge resulting from the uncertain SJA actuator parameters is mitigated via innovative algebraic manipulation in the tracking error system derivation along with a robust nonlinear control law employing constant SJA parameter estimates. A key contribution of the paper is a rigorous analysis of the range of SJA actuator parameter uncertainty within which asymptotic …


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


Flight Dynamics: Flying Qualities Of Handling Factors Are Engineered Into The Aircraft Design, Nihad E. Daidzic Dec 2017

Flight Dynamics: Flying Qualities Of Handling Factors Are Engineered Into The Aircraft Design, Nihad E. Daidzic

Aviation Department Publications

Flight dynamics is an aerospace engineering discupline that addresses aircraft stability and controllability. It is also mathematically very intensive and is traditionally the most difficult in the pilot training curriculum. Ultimately, it does not matter how good steady-state performance of an aircraft design is if its flying (handling) qualities are deficient. Paradoxically, the first airplane Wright Flyer, was statically and dynamically unstable, had large control authority, and was difficult to fly. We've come a long way since those early days, but stability is still vitally important in aircraft design and flight ops. The focus of this article will be airplane …


Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane Nov 2017

Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane

Electronic Thesis and Dissertation Repository

This thesis presents a general framework for hybrid attitude control and estimation design on the Special Orthogonal group SO(3). First, the attitude stabilization problem on SO(3) is considered. It is shown that, using a min-switch hybrid control strategy designed from a family of potential functions on SO(3), global exponential stabilization on SO(3) can be achieved when this family of potential functions satisfies certain properties. Then, a systematic methodology to construct these potential functions is developed. The proposed hybrid control technique is applied to the attitude tracking problem for rigid body systems. A smoothing mechanism is proposed to filter out the …


A Study On The E-Navigation Modus Operandi, Nurma Karima Sari Nov 2017

A Study On The E-Navigation Modus Operandi, Nurma Karima Sari

World Maritime University Dissertations

No abstract provided.


University Of Minnesota Smallsat And High Altitude Ballooning Development And Collaboration, Luke Zumwalt, Ricardo Saborio, Athanasios Pantazides, Aaron Nightingale, Demoz Gebre Egziabher, Lindsay Glesener Oct 2017

University Of Minnesota Smallsat And High Altitude Ballooning Development And Collaboration, Luke Zumwalt, Ricardo Saborio, Athanasios Pantazides, Aaron Nightingale, Demoz Gebre Egziabher, Lindsay Glesener

2017 Academic High Altitude Conference

The Experiment for X-ray Characterization and Timing (EXACT) mission is a 3U CubeSat technology-development project being built by the SmallSat team at the University of MN – Twin Cities which is a joint research effort of the Aerospace Engineering and Mechanics (AEM) Department and the School of Physics and Astronomy (SPA). The main objective of this spacecraft is to carry a payload including a detector designed to measure energy and time of arrival time of individual hard x-ray photons emitted from the Sun and from other astrophysical sources. During the development process for EXACT, flights provided by the High-Altitude Student …


Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour Oct 2017

Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour

2017 Academic High Altitude Conference

The North Dakota Atmospheric Education Student Initiated Research (ND-AESIR) team launched a balloon during the total solar eclipse in Rexburg, Idaho. After the umbra’s passage, the balloon experienced unexpectedly high levels of atmospheric turbulence. Video footage taken from the payload displays the conditions, and analysis of flight path data models created from the iridium GPS confirm that unusually violent turbulence occurred. These forces caused the key rings holding the bottom of the parachute to the payload train to rip open; the balloon and parachute flew away and the payloads free fell to the surface from an altitude of 68,301 feet. …


How Iridium Satellite Tracker Model 9602-Lp Asset Affects Span Of Control In High Altitidue Balloning, Steven Hamby Oct 2017

How Iridium Satellite Tracker Model 9602-Lp Asset Affects Span Of Control In High Altitidue Balloning, Steven Hamby

2017 Academic High Altitude Conference

The Irdium Satelitte Network has greatly increased safety in the ballooning field by enabling a greater span of control in flight awarness and termination. This enhanced awareness stems from accurate high interval GPS coordinates that can be integrated into ground station tracking software. The Iridium Network creates the ability to send activation commands remotely with high reliabilty using emails. Additionally this feature has the ability to use local rf transmiters and recievers to increase the flexibilty of cutdown designs. The Iridium Modems provides significant coverage regardless of altitude and loss of ground communication. It is marketed at econmical price point …


Ground Station Tracking System, Garret Hilton, Carter Mciver, Steven Hamby, Trevor Gahl, Casey Coffman, David Schwehr Oct 2017

Ground Station Tracking System, Garret Hilton, Carter Mciver, Steven Hamby, Trevor Gahl, Casey Coffman, David Schwehr

2017 Academic High Altitude Conference

One of the Eclipse Ballooning Project’s main goals was to stream live video of the eclipse to the internet. To accomplish this task a tracking antenna was built to follow the balloon payload. As an added challenge, the task had to be completed on a budget. The “ground station” is the center for communication between the payload and user. This system utilizes GPS position reports from the payload via the iridium network to determine the balloons position. The computer algorithm takes in additional GPS and IMU data from the ground station to determine a relative heading to orientate the antenna …


High Altitude Balloon Flight Predictions, Sara Stafford Oct 2017

High Altitude Balloon Flight Predictions, Sara Stafford

2017 Academic High Altitude Conference

The ability to make accurate predictions of a high altitude balloon’s flight trajectory is critical for safety, protection of sensitive payloads, and ease of payload recovery. Several free software programs and websites are available which make predictions straightforward and yield acceptable results. Additional resources are presented which help evaluate the stability of the projected flight track. The various methods of prediction will be described and results compared with actual flight data.


Unmanned Aerial Vehicle (Uav): Flight Performance, Fevens Louis Jean Sep 2017

Unmanned Aerial Vehicle (Uav): Flight Performance, Fevens Louis Jean

Student Works

It is important that when measuring the sideslip angle and angles of attack during flight test performance of a UAV (Unmanned Aerial Vehicle), to fully understand that the Angles of attack and sideslip are parameters that aid in determining the safety of the flight as they improve stability and control of the aircraft. The disadvantage of the measurement of these angles using this method is low accuracy of measurement due to friction to the potentiometers in connection with the vanes. To counter this, a new sensing method was developed to minimize friction and collect more accurate data. The method is …


Simplex Solutions For Optimal Control Flight Paths In Urban Environments, Michael D. Zollars, Richard G. Cobb, David J. Grymin Aug 2017

Simplex Solutions For Optimal Control Flight Paths In Urban Environments, Michael D. Zollars, Richard G. Cobb, David J. Grymin

Faculty Publications

This paper identifies feasible fight paths for Small Unmanned Aircraft Systems in a highly constrained environment. Optimal control software has long been used for vehicle path planning and has proven most successful when an adequate initial guess is presented flight to an optimal control solver. Leveraging fast geometric planning techniques, a large search space is discretized into a set of simplexes where a Dubins path solution is generated and contained in a polygonal search corridor free of path constraints. Direct optimal control methods are then used to determine the optimal flight path through the newly defined search corridor. Two scenarios …


Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling Aug 2017

Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

An Unmanned Aircraft System (UAS) is a Cyber-Physical System (CPS) in which a host of real-time computational tasks contending for shared resources must be cooperatively managed to obtain mission objectives. Traditionally, control of the UAS is designed assuming a fixed, high sampling rate in order to maintain reliable performance and margins of stability. But emerging methods challenge this design by dynamically allocating resources to computational tasks, thereby affecting control and mission performance. To apply these emerging strategies, a characterization and understanding of the effects of timing on control and trajectory following performance is required. Going beyond traditional control evaluation techniques, …


Time Optimal State Feedback Control With Application To A Spacecraft With Cold Gas Propulsion, Samuel J. Kitchen-Mckinley, Sergey V. Drakunov Jul 2017

Time Optimal State Feedback Control With Application To A Spacecraft With Cold Gas Propulsion, Samuel J. Kitchen-Mckinley, Sergey V. Drakunov

Publications

A cold gas propulsion system is well suited to provide the required thrust for a small surveyor spacecraft operated near an asteroid or planetary surface. The cold gas propellant can obtained in-situ from local surface or atmospheric constituents. For small spacecraft, the cold gas system may be limited to only on-off control of the main tank where the generated thrust is directly dependent on the tank pressure. As such the thrust will slowly decrease as the propellant is expended. A state feedback, time optimal, control law is developed for a vehicle with propellant is expended. A state feedback, time optimal, …


Optimal Control Methods For Missile Evasion, Ryan W. Carr Jul 2017

Optimal Control Methods For Missile Evasion, Ryan W. Carr

Theses and Dissertations

Optimal control theory is applied to the study of missile evasion, particularly in the case of a single pursuing missile versus a single evading aircraft. It is proposed to divide the evasion problem into two phases, where the primary considerations are energy and maneuverability, respectively. Traditional evasion tactics are well documented for use in the maneuverability phase. To represent the first phase dominated by energy management, the optimal control problem may be posed in two ways, as a fixed final time problem with the objective of maximizing the final distance between the evader and pursuer, and as a free final …


Cruise Missile Integrated Air Defense System Penetration: Modeling The S-400 System, Michael Pelosi, Amie K. Honeycutt Jun 2017

Cruise Missile Integrated Air Defense System Penetration: Modeling The S-400 System, Michael Pelosi, Amie K. Honeycutt

International Journal of Aviation, Aeronautics, and Aerospace

This research determines improved flight-path routes that make maximum utilization of terrain-masking opportunities, and defending radar and missile system equipment performance and launch timing constraints, in order to avoid radar detection and tracking, and to mitigate subsequent missile shoot-down risks. The problem is formulated as one of constrained optimization in three dimensions. Advantageous solutions are identified using the A* Algorithm in conjunction with detailed equipment performance and constraint calculations and high-resolution digital terrain elevation maps. Topographical features in digital terrain are exploited by the algorithm to avoid radar detection and tracking. The model includes provisions for all-aspect/all-frequency radar cross section …


Static Testing Of Propulsion Elements For Small Multirotor Unmanned Aerial Vehicles, Robert W. Deters, S.C. Kleinke, Michael S. Selig Jun 2017

Static Testing Of Propulsion Elements For Small Multirotor Unmanned Aerial Vehicles, Robert W. Deters, S.C. Kleinke, Michael S. Selig

Publications

The growing use of small multirotor aircraft has increased the interest in having better performance results especially with the propulsion system. The size of the propellers used on these aircraft operate at low Reynolds numbers that are typically less than 200,000. Static performance testing of ten propeller pairs (tractor and pusher) were completed and is the beginning of a systematic test of propellers used on multirotor systems. The propellers chosen for this initial set of tests were selected from four popular quadrotors. Besides testing the propellers provided with the aircraft, propellers that are sold as replacements from third-party companies were …


Polysat Helmholtz Cage, Alex Nichols, Nicolas Le Renard, Jordan Skaro, Louie Thiros, Madeline Tran Jun 2017

Polysat Helmholtz Cage, Alex Nichols, Nicolas Le Renard, Jordan Skaro, Louie Thiros, Madeline Tran

Mechanical Engineering

The MagCal5 Helmholtz cage project is an interdisciplinary approach to provide the PolySat/CubeSat research lab with a magnetic testing environment for the calibration of magnetic components and verification of various control laws. The Cal Poly CubeSat organization is the home of the CubeSat Specification, and acts as a testing and integration facility for CubeSats built by universities across the world. The PolySat organization is a CubeSat developer that works with numerous industry partners to design, manufacture, and operate CubeSats to further scientific advancement. The addition of a magnetic test stand to the lab will allow CubeSat to extend to the …


Activsense Sidestick: A Force Sensing And Force Feedback Joystick, Kobbe Farwick Jun 2017

Activsense Sidestick: A Force Sensing And Force Feedback Joystick, Kobbe Farwick

Electrical Engineering

As aircraft systems continue to become more integrated and fully electronic, hence fly-by-wire, the pilot is slowly losing the physical cues that were once relied upon for the safe operation of the aircraft. Many commercial airliners, such as Airbus, use passive sidesticks that integrate with the electronic flight controls system. These sidesticks move much like a gaming joystick which results in the pilot not having any “feel” for the aerodynamic forces present on the control surfaces. Without the force feedback of a mechanically linked control system the pilot could inadvertently stall the aircraft or place it into an unstable flight …


Modeling And Simulation Of A Sounding Rocket Active Stabilization System, Steven M. Maclean Jun 2017

Modeling And Simulation Of A Sounding Rocket Active Stabilization System, Steven M. Maclean

Master's Theses

The Horizon Simulation Framework is a modeling and simulation framework developed to verify system level requirements. In this thesis, the framework is extended to include the Dynamic position type that existed in the early development phase of the framework. The Dynamic position type is tested through the modeling and simulation of a sounding rocket. An active control system based on linear-quadratic regulator (LQR) control theory is implemented and tested in the simulation to determine the overall effect on altitude. A first order aerodynamics and aeroprediction model are created within the framework to allow for rapid changes early in the design …


Stereoscopic 3-D Presentation For Air Traffic Control Digital Radar Displays, Jason G. Russi, Brent T. Langhals, Michael E. Miller, Eric L. Heft May 2017

Stereoscopic 3-D Presentation For Air Traffic Control Digital Radar Displays, Jason G. Russi, Brent T. Langhals, Michael E. Miller, Eric L. Heft

AFIT Patents

An apparatus and method of presenting air traffic data to an air traffic controller are provided. Air traffic data including a two dimensional spatial location and altitude for a plurality of aircraft is received. A disparity value is determined based on the altitude for each aircraft of the plurality of aircraft. Left and right eye images are generated of the plurality of aircraft where at least one of the left and right eye images is based on the determined disparity value. The left and right eye images are simultaneously displayed to the air traffic controller on a display. The simultaneously …


Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly May 2017

Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly

Masters Theses

Engineers and pilots rely on mechanical flow angle vanes on air data probes to determine the angle of attack of the aircraft in flight. These probes, however, are costly, come with inherent measurement errors, affect the flight characteristics of the aircraft, and are potentially dangerous in envelope expansion flights. Advances in the accuracy, usability, and affordability of inertial navigation systems allow for angle of attack to be determined accurately without direct measurement of the airflow around the aircraft. Utilizing an algorithm developed from aircraft equations of motion, a post-flight data review is completed as the first step in proving the …


Implementing Delay-Tolerant Networking At Morehead State University, Nathaniel J. Richard Apr 2017

Implementing Delay-Tolerant Networking At Morehead State University, Nathaniel J. Richard

Morehead State Theses and Dissertations

A thesis presented to the faculty of the College of Science at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Nathaniel J. Richard on April 28, 2017.


Adopting Unmanned Flight Operations Into Controlled Airspace, Jennah C. Perry, Johnny Young, Jacqueline Luedtke, Benjamin Cook, Holly Hughes, Allison M. Little, Kyle Wilkerson Apr 2017

Adopting Unmanned Flight Operations Into Controlled Airspace, Jennah C. Perry, Johnny Young, Jacqueline Luedtke, Benjamin Cook, Holly Hughes, Allison M. Little, Kyle Wilkerson

Publications

Unmanned aircraft activity is becoming more common within the National Airspace System (NAS) and is expected to dominate the NAS in the near future. Specific procedures for adopting unmanned aircraft into the National Airspace System (NAS).

A variation of the Military Grid Reference System was developed and digitally overlaid onto the radar display. To incorporate this grid system, a customized flight plan database was created for the storage of operator submitted flight plans. Instead of verbal communication, a computer chat system is used for communication because of the low altitude operations in the field.

The Federal Aviation Administration (FAA) has …


Find Your Center, Nihad E. Daidzic Apr 2017

Find Your Center, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Integrating Unmanned Aircraft Operations Into The National Airspace System, Benjamin Cook, Holly Hughes, Kyle Wilkerson, Allison Little Mar 2017

Integrating Unmanned Aircraft Operations Into The National Airspace System, Benjamin Cook, Holly Hughes, Kyle Wilkerson, Allison Little

Discovery Day - Prescott

Unmanned Aircraft Systems (UAS) are expected to dominate the National Airspace System (NAS) in the near future. One particular barrier preventing the integration of unmanned aircraft into the NAS is the lack of standardized procedures for distinguishing and communicating with remote UAS operators. In preparation for adopting unmanned flight operations into a complex control system, it is important to identify solutions to effectively control UAS in the NAS. To achieve simultaneous safe manned and unmanned aircraft operations in the NAS, the Joint UAS and ATC Team (JUAT) at Embry-Riddle Aeronautical University (ERAU) are developing a system that could be used …


Integrating Unmanned Aircraft Operations Into The National Airspace System, Benjamin Cook, Holly Hughes, Allison Little, Kyle Wilkerson, Jennah C. Perry, Johnny Young, Jacqueline Luedtke Mar 2017

Integrating Unmanned Aircraft Operations Into The National Airspace System, Benjamin Cook, Holly Hughes, Allison Little, Kyle Wilkerson, Jennah C. Perry, Johnny Young, Jacqueline Luedtke

Publications

Commercial unmanned aircraft systems (UAS) are expected to dominate the National Airspace System (NAS) in the years to come. One particular barrier preventing integration of UAS into the NAS is the lack of standardized procedures for separating aircraft and communicating with ATC. In preparation for adopting unmanned flight operations into a complex control system, it is important to identify solutions to effectively control UAS in the NAS.

The Joint UAS and ATC Team (JUAT) group has designed several simulated ATC scenarios in order to determine effective solutions for integration. Through the use of digitized radar display overlays that replicate the …


Combined Stereo Vision And Inertial Navigation For Automated Aerial Refueling, Daniel T. Johnson Mar 2017

Combined Stereo Vision And Inertial Navigation For Automated Aerial Refueling, Daniel T. Johnson

Theses and Dissertations

This paper describes the design of an EKF to obtain the precise relative position of two aircraft in a refueling maneuver while operating in GPS denied environments. The EKF uses the INS already present in both aircraft as well as the stereo camera system organic to new tanker systems. The aircraft trajectories are generated according to authentic refueling profiles with flight dynamics software and executed in a 3D virtual environment to enable deterministic simulation of the stereo camera system and to demonstrate the effectiveness of the combined system in a refueling scenario. Results show the system can achieve sufficient accuracy …


Small Fixed-Wing Aerial Positioning Using Inter-Vehicle Ranging Combined With Visual Odometry, Benjamin M. Fain Mar 2017

Small Fixed-Wing Aerial Positioning Using Inter-Vehicle Ranging Combined With Visual Odometry, Benjamin M. Fain

Theses and Dissertations

There has been increasing interest in developing the ability for small unmanned aerial systems (SUAS) to be able to operate in environments where GPS is not available. This research considers the case of a larger aircraft loitering above a smaller GPS-denied SUAS. This larger aircraft is assumed to have greater resources which can overcome the GPS jamming and provide range information to the SUAS flying a mission below. This research demonstrates that using a ranging update combined with an aircraft motion model and visual odometry can greatly improve the accuracy of a SUASs estimated position in a GPS-denied environment.


P26. Global Exponential Stabilization On So(3), Soulaimane Berkane Mar 2017

P26. Global Exponential Stabilization On So(3), Soulaimane Berkane

Western Research Forum

Global Exponential Stabilization on SO(3)