Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2016

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Navigation, Guidance, Control and Dynamics

A Multi-Agent System For Adaptive Control Of A Flapping-Wing Micro Air Vehicle, Michal Podhradský Dec 2016

A Multi-Agent System For Adaptive Control Of A Flapping-Wing Micro Air Vehicle, Michal Podhradský

Dissertations and Theses

Biomimetic flapping-wing vehicles have attracted recent interest because of their numerous potential military and civilian applications. In this dissertation is described the design of a multi-agent adaptive controller for such a vehicle. This controller is responsible for estimating the vehicle pose (position and orientation) and then generating four parameters needed for split-cycle control of wing movements to correct pose errors. These parameters are produced via a subsumption architecture rule base. The control strategy is fault tolerant. Using an online learning process, an agent continuously monitors the vehicle's behavior and initiates diagnostics if the behavior has degraded. This agent can then …


Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield Dec 2016

Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield

Master's Theses

An investigation was conducted into the feasibility of using an unconventional flight technique, asymmetric flight, to improve overall efficiency of solar aircraft. In this study, asymmetric flight is defined as steady level flight in a non-wings-level state in- tended to improve solar incidence angle. By manipulating aircraft orientation through roll angle, solar energy collection is improved but aerodynamic efficiency is worsened due to the introduction of additional trim drag. A point performance model was devel- oped to investigate the trade-off between improvement in solar energy collection and additional drag associated with asymmetric flight. A mission model with a focus on …


A Novel Approach For Controlled Deorbiting And Reentry Of Small Spacecraft, Larry H. Fineberg, Justin Treptow, Timothy Bass, Scott Clark, Yusef Johnson, Bradley Poffenberger Nov 2016

A Novel Approach For Controlled Deorbiting And Reentry Of Small Spacecraft, Larry H. Fineberg, Justin Treptow, Timothy Bass, Scott Clark, Yusef Johnson, Bradley Poffenberger

Space Traffic Management Conference

No abstract provided.


Guidance Of Multi-Agent Fixed-Wing Aircraft Using A Moving Mesh Method, A Ram (Bella) Kim Oct 2016

Guidance Of Multi-Agent Fixed-Wing Aircraft Using A Moving Mesh Method, A Ram (Bella) Kim

A Ram (Bella) Kim

This paper presents a novel guidance logic for multi-agent fixed-wing unmanned aerial systems using a moving mesh method. The moving mesh method is originally designed for use in the adaptive numerical solution of partial differential equations, where a high proportion of mesh points are placed in the regions of large solution variations and few points in the rest of the domain. In this work, the positions of the aircraft are considered as mesh nodes connected to form a triangular mesh in two spatial dimensions. The outer aircraft positions are planned with the reference point algorithm. This logic provides the outer …


Optimal Control Of An Uninhabited Loyal Wingman, Clay J. Humphreys Sep 2016

Optimal Control Of An Uninhabited Loyal Wingman, Clay J. Humphreys

Theses and Dissertations

As researchers strive to achieve autonomy in systems, many believe the goal is not that machines should attain full autonomy, but rather to obtain the right level of autonomy for an appropriate man-machine interaction. A common phrase for this interaction is manned-unmanned teaming (MUM-T), a subset of which, for unmanned aerial vehicles, is the concept of the loyal wingman. This work demonstrates the use of optimal control and stochastic estimation techniques as an autonomous near real-time dynamic route planner for the DoD concept of the loyal wingman. First, the optimal control problem is formulated for a static threat environment and …


Adaptive Estimation And Heuristic Optimization Of Nonlinear Spacecraft Attitude Dynamics, Joshuah A. Hess Sep 2016

Adaptive Estimation And Heuristic Optimization Of Nonlinear Spacecraft Attitude Dynamics, Joshuah A. Hess

Theses and Dissertations

For spacecraft conducting on-orbit operations, changes to the structure of the spacecraft are not uncommon. These planned or unanticipated changes in inertia properties couple with the spacecraft's attitude dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for the systems dynamics. This research has three distinct, but related, contributions to satellite attitude dynamics and estimation. In the first part of this research, MMAE routines employing parallel banks of unscented attitude …


Improving Real-World Performance Of Vision Aided Navigation In A Flight Environment, Donald T. Venable Sep 2016

Improving Real-World Performance Of Vision Aided Navigation In A Flight Environment, Donald T. Venable

Theses and Dissertations

The motivation of this research is to fuse information from an airborne imaging sensor with information extracted from satellite imagery in order to provide accurate position when GPS is unavailable for an extended duration. A corpus of existing geo-referenced satellite imagery is used to create a key point database. A novel algorithm for recovering coarse pose using by comparing key points extracted from the airborne imagery to the reference database is developed. This coarse position is used to bootstrap a local-area geo-registration algorithm, which provides GPS-level position estimates. This research derives optimizations for existing local-area methods for operation in flight …


A Hybrid Optimization Technique Applied To The Intermediate-Target Optimal Control Problem, Clay J. Humphreys, Richard G. Cobb, David R. Jacques, Jonah A. Reeger Aug 2016

A Hybrid Optimization Technique Applied To The Intermediate-Target Optimal Control Problem, Clay J. Humphreys, Richard G. Cobb, David R. Jacques, Jonah A. Reeger

Faculty Publications

The DoD has introduced the concept of Manned-Unmanned Teaming, a subset of which is the loyal wingman. Optimal control techniques have been proposed as a method for rapidly solving the intermediate-target (mid-point constraint) optimal control problem. Initial results using direct orthogonal collocation and a gradient-based method for solving the resulting nonlinear program reveals a tendency to converge to or to get `stuck’ in locally optimal solutions. The literature suggested a hybrid technique in which a particle swarm optimization is used to quickly find a neighborhood of a more globally minimal solution, at which point the algorithm switches to a gradient-based …


A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano Jun 2016

A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano

Master's Theses

This thesis is a brief look at a new solution to a problem that has been approached in many different ways in the past - the N body problem. By focusing on planetary systems, satellite dynamics can be modeled in a fashion similar to the Circular Restricted Three Body Problem (CR3BP) with the Circular Restricted N Body Problem (CRNBP). It was found that this new formulation of the dynamics can then utilize the tools created from all the research into the CR3BP to reassess the possibility of different complex trajectories in systems where there are more than just two large …


Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa Jun 2016

Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa

Master's Theses

Due to mass and volume constraints on planetary missions, the development of control techniques that do not require fuel are of big interest. For those planets that have a dense enough atmosphere, aerodynamic drag can play an important role. The use of atmospheric differential drag for formation keeping was first proposed by Carolina L. Leonard in 1986, and has been proven to work in Earth atmosphere by many missions. Moreover, atmospheric drag has been used in the Mars atmosphere as aerobraking technique to decelerate landing vehicles, and to circularize the orbit of the spacecraft. Still, no literature was available related …


A Radial Basis Function Method For Solving Optimal Control Problems., Hossein Mirinejad May 2016

A Radial Basis Function Method For Solving Optimal Control Problems., Hossein Mirinejad

Electronic Theses and Dissertations

This work presents two direct methods based on the radial basis function (RBF) interpolation and arbitrary discretization for solving continuous-time optimal control problems: RBF Collocation Method and RBF-Galerkin Method. Both methods take advantage of choosing any global RBF as the interpolant function and any arbitrary points (meshless or on a mesh) as the discretization points. The first approach is called the RBF collocation method, in which states and controls are parameterized using a global RBF, and constraints are satisfied at arbitrary discrete nodes (collocation points) to convert the continuous-time optimal control problem to a nonlinear programming (NLP) problem. The …


Time-Of-Flight Based Sonic Speed Measurements For Cold Gas Thruster Development, Brandon W. Kempf May 2016

Time-Of-Flight Based Sonic Speed Measurements For Cold Gas Thruster Development, Brandon W. Kempf

Mechanical Engineering Undergraduate Honors Theses

The purpose of this thesis is to explore an experiment developed for validating the usage of a gaseous solution of water and propylene glycol for cold gas propulsion. The experiment involves a “Time of Flight” method of calculating the speed of sound in the gas and the corresponding specific heat ratio using a copper tube, two MEMS microphones, a piezoelectric speaker, and data-acquisition hardware. The experiment was calibrated using the known thermodynamic properties of air. The accuracy of the experiment was found to be within 0.6% for calculations of the speed of sound in air and within 1.0% of the …


Utilization Of Trss To Assist Pilot’S Decision Making Process During Critical Runway Operations., Nihad E. Daidzic Apr 2016

Utilization Of Trss To Assist Pilot’S Decision Making Process During Critical Runway Operations., Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Nonlinear Flight Control Design Using Backstepping Methodology, Thanh Trung Tran Apr 2016

Nonlinear Flight Control Design Using Backstepping Methodology, Thanh Trung Tran

Mechanical & Aerospace Engineering Theses & Dissertations

The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of …


Visual-Ins Using A Human Operator And Converted Measurements, Turner J. Montgomery Mar 2016

Visual-Ins Using A Human Operator And Converted Measurements, Turner J. Montgomery

Theses and Dissertations

A method human operated INS aiding is explored in which the pilot identifies and tracks a ground feature of unknown position over a short measurement epoch using an E/O sensor. One then refers to Visual-INS. In contrast to current research trends, a human operator is entrusted with visually tracking the ground feature. In addition, a less conventional measurement linearization technique is applied to generate “converted” measurements. A linear regression algorithm is then applied to the converted measurements providing an estimate of the INS horizontal velocity error and accelerometer biases. At the completion of the measurement epoch, the INS is corrected …


Evaluation Of Verification Approaches Applied To A Nonlinear Control System, Kerianne H. Gross Mar 2016

Evaluation Of Verification Approaches Applied To A Nonlinear Control System, Kerianne H. Gross

Theses and Dissertations

As the demand for increasingly complex and autonomous systems grows, designers may consider computational and artificial intelligence methods for more advanced, re- active control. While the performance gained by such increasingly intelligent systems may be superior to traditional control techniques, the lack of transparency in the systems and opportunity for emergent behavior limits their application in the field. New verification and validation methods must be developed to ensure the output of such controllers do not put the system or any people interacting with it in danger. This challenge was highlighted by the former Air Force Chief Scientist in his 2010 …


Investigation Into Active Spanwise Camber Deformation On The Lateral Stability And Roll Control Of The X-56a Compared To Conventional Ailerons, Eric T. Yerly Mar 2016

Investigation Into Active Spanwise Camber Deformation On The Lateral Stability And Roll Control Of The X-56a Compared To Conventional Ailerons, Eric T. Yerly

Theses and Dissertations

"This research compares the stability and roll characteristics of an X-56A using AFRL’s Variable Camber Complaint wing technology to actively change wing camber compared to conventional ailerons deflected at set angles. An analysis of the stability and roll characteristics was modeled using a 3-D vortex lattice theory simulation, and that data was compared to wind tunnel testing to verify and validate the model results. Wind tunnel data was collected using 19 inch 3-D printed scale models with wings fabricated with a pre-determined percentage of camber deformation, as well as models with fixed aileron deflections. The full span model changed camber …


Real-Time Implementation Of Vision-Aided Monocular Navigation For Small Fixed-Wing Unmanned Aerial Systems, Timothy I. Machin Mar 2016

Real-Time Implementation Of Vision-Aided Monocular Navigation For Small Fixed-Wing Unmanned Aerial Systems, Timothy I. Machin

Theses and Dissertations

The goal of this project was to develop and implement algorithms to demonstrate real-time positioning of a UAV using a monocular camera combined with previously collected orthorectified imagery. Unlike previous tests, this project did not utilize a full inertial navigation system (INS) for attitude, but instead had to rely on the attitude obtained by inexpensive commercial off-the-shelf (COTS) autopilots. The system consisted of primarily COTS components and open-source software, and was own over Camp Atterbury, IN for a sequence of flight tests in Fall 2015. The system obtained valid solutions over much of the flight path, identifying features in the …


Cognitive Loading, Affect Regulation And Aerodynamic Considerations In Uninhabited Aerial Vehicle Systems Refueling Operations, Sam Holley, Ian R. Mcandrew Mar 2016

Cognitive Loading, Affect Regulation And Aerodynamic Considerations In Uninhabited Aerial Vehicle Systems Refueling Operations, Sam Holley, Ian R. Mcandrew

Publications

Factors influencing aerodynamics involved in aerial refueling illustrate the potential for specialist operators to manage these operations for remotely piloted vehicles. The authors review aerodynamic characteristics of uninhabited aerial systems during refueling, drogue and boom design and associated flight dynamics, cognitive factors associated with control transfer and refueling, and affective components and their influence on decision making and operator performance. Attention is directed to cognitive loading and encoding challenges, with considerations for hippocampal mapping and hemispheric asymmetry. Implications for system state awareness are examined. Advantages for specially trained refueling pilot operators are discussed and recommendations given for areas of concentration.


System And Method For Location Of Aircraft, Albert D. Helfrick Feb 2016

System And Method For Location Of Aircraft, Albert D. Helfrick

Publications

A system and method are provided that includes an aircraft secondary radar transponder activity detector that monitors an aircraft's transponder transmissions and activates an emer­gency locator transmitter to begin transmitting should the aircraft transponder transmissions cease to help locate an aircraft that may have become undetectable by conventional aircraft surveillance and tracking systems.


Determining The Runway Point-Of-No-Return For Landing Roll Go-Around In Transport Category Airplanes, Nihad E. Daidzic Jan 2016

Determining The Runway Point-Of-No-Return For Landing Roll Go-Around In Transport Category Airplanes, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Early Afternoon Concurrent Panel Sessions: Commercial Space Industry Snapshot: Presentation: Small Catapult-Assisted Horizontal-Launch Reusable Rbcc Ssto Spaceplane For Economical Short-Duration Leo Access, Nihad E. Daidzic, Jan 2016

Early Afternoon Concurrent Panel Sessions: Commercial Space Industry Snapshot: Presentation: Small Catapult-Assisted Horizontal-Launch Reusable Rbcc Ssto Spaceplane For Economical Short-Duration Leo Access, Nihad E. Daidzic,

Aviation / Aeronautics / Aerospace International Research Conference

This article discusses the conceptual design, flight trajectory calculations, and utilization of the possible future horizontally-launched reusable Single-Stage-to-Orbit (SSTO) spaceplane for small payload short-duration manned/unmanned access to Low-Earth-Orbit (LEO). The 10,000 lb spaceplane would use 5,000 ft catapult-assist horizontal-launch facility and conduct powered approach and landing on conventional horizontal paved runways following the gliding atmospheric re-entry. To increase the economy of operation, the launch facility located at high elevations (4,000+ ft) equatorial region is required, such as, the plateaus in Kenya and Tanzania in Africa and/or Ecuador in South America. A 500-lb payload, including pilot-commander, is envisioned. The propulsion cycle …


Team Training In Safety And Security Via Simulation: A Practical Dimension Of Maritime Education And Training, Michael Baldauf, Dimitrios Dalaklis, Aditi Kataria Jan 2016

Team Training In Safety And Security Via Simulation: A Practical Dimension Of Maritime Education And Training, Michael Baldauf, Dimitrios Dalaklis, Aditi Kataria

Conference Papers

In the rather extended maritime domain, a term that should be the epicentre of any successful careerbuilding path is tailor-made training via cutting-edge simulators. To cut a long story short, the breadth of operations on the various types of ships has expanded to such a large extent that extensive practical training drills are becoming a compelling need to contribute to competent seafarers. This type of training can guarantee the positive outcome in their decision-making process and help the seafarers often being under continuous pressure, to suitably respond to the various safety and security threats on-board a vessel. The several conventions …


Use Of A Small Unmanned Aerial System For The Sr-530 Mudslide Incident Near Oso, Washington, Robin Murphy, Brittany Duncan, Tyler Collins, Justin Kendrick, Patrick Lohman, Tamara Palmer, Frank Sanborn Jan 2016

Use Of A Small Unmanned Aerial System For The Sr-530 Mudslide Incident Near Oso, Washington, Robin Murphy, Brittany Duncan, Tyler Collins, Justin Kendrick, Patrick Lohman, Tamara Palmer, Frank Sanborn

School of Computing: Faculty Publications

The Center for Robot-Assisted Search and Rescue deployed three commercially available small unmanned aerial systems (SUASs)—an AirRobot AR100B quadrotor, an Insitu Scan Eagle, and a PrecisionHawk Lancaster—to the 2014 SR-530 Washington State mudslides. The purpose of the flights was to allow geologists and hydrologists to assess the eminent risk of loss of life to responders from further slides and flooding, as well as to gain a more comprehensive understanding of the event. The AirRobot AR100B in conjunction with PrecisionHawk postprocessing software created two-dimensional (2D) and 3D reconstructions of the inaccessible “moonscape” region of the slide and provided engineers with a …


Drone Journalism Lab Operations Manual, Matt Waite, Ben Kreimer Jan 2016

Drone Journalism Lab Operations Manual, Matt Waite, Ben Kreimer

College of Journalism and Mass Communications: Faculty Publications

This text is a guide for safely conducting drone journalism field work. It takes into account America's current drone regulations, our understanding of the public's acceptance of drones, the state of drone technologies, and our own experiences. The number one goal of any drone journalism operation is safety. At no time should safety be compromised. If there is any doubt, return the drone, also known as an unmanned aerial system (UAS), to the landing zone and terminate the flight. Ethical journalism is responsible journalism, and flying a drone means taking responsibility for the safety of those near you, on the …


General Solution Of The Wind Triangle Problem And The Critical Tailwind Angle, Nihad E. Daidzic Jan 2016

General Solution Of The Wind Triangle Problem And The Critical Tailwind Angle, Nihad E. Daidzic

Aviation Department Publications

A general analytical solution of the navigational wind-triangle problem and the calculation of the critical tailwind angle are presented in this study among other findings. Any crosswind component will effectively create a headwind component on fixed course tracks. The meaning of a route track is lost with excessive crosswinds representing the bifurcation point between the possible and the impossible navigational solutions. Any wind of constant direction and speed will effectively reduce groundspeed and increase time-of-flight on closed-loop multi-segment flights. Effective wind track component consists, in general, of true and induced components. The average groundspeed of multiple-leg flights is a harmonic …


A Usability And Learnability Case Study Of Glass Flight Deck Interfaces And Pilot Interactions Through Scenario-Based Training, Thomas James De Cino Jan 2016

A Usability And Learnability Case Study Of Glass Flight Deck Interfaces And Pilot Interactions Through Scenario-Based Training, Thomas James De Cino

CCE Theses and Dissertations

In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems.

While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks …


Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans Jan 2016

Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans

Theses and Dissertations--Electrical and Computer Engineering

Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite …