Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Navigation, Guidance, Control and Dynamics

An Analysis Of Stabilizing 3u Cubesats Using Gravity Gradient Techniques And A Low Power Reaction Wheel, Erich Bender Jun 2011

An Analysis Of Stabilizing 3u Cubesats Using Gravity Gradient Techniques And A Low Power Reaction Wheel, Erich Bender

Aerospace Engineering

The purpose of this paper is to determine the feasibility of gravity gradient stabilizing a 3U CubeSat and then using a miniature reaction wheel to further increase stability characteristics. This paper also serves as a guide to understanding and utilizing quaternions in attitude control analysis. The analytical results show that using 33 centimeter booms and 400 gram tip masses, a 3U CubeSat will experience a maximum of 6 degrees of angular displacement in yaw and pitch, and less than .5 degrees of angular displacement in the nadir axis. A .120 kilogram miniature reaction wheel developed by Sinclair Interplanetary was introduced …


Boom Stability Control Final Project Report, Michael Barnes, Justin Carnahan, Daniel Fluitt, Alicia Johnstone Jun 2011

Boom Stability Control Final Project Report, Michael Barnes, Justin Carnahan, Daniel Fluitt, Alicia Johnstone

Mechanical Engineering

The BOOMStiC Gravity Gradient Boom and Turnstile Antenna project was developed to provide a passive attitude control system and better communications for future CubeSat satellites developed by California Polytechnic State University. The system utilizes the energy from a coilable metal spring to deploy a tip mass to a length of one meter from the side of the satellite. Calculations show the resulting gravity gradient torque causes to the satellite to settle two degrees from normal to the earth’s surface.