Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Monocular Vision Localization Using A Gimbaled Laser Range Sensor, Don J. Yates Mar 2010

Monocular Vision Localization Using A Gimbaled Laser Range Sensor, Don J. Yates

Theses and Dissertations

There have been great advances in recent years in the area of indoor navigation. Many of these new navigation systems rely on digital images to aid an inertial navigation estimates. The Air Force Institute of Technology (AFIT) has been conducting research in this area for a number of years. The image-aiding techniques are centered around tracking stationary features in order to improve inertial navigation estimates. Previous research has used stereo vision systems or terrain constraints with monocular systems to estimate feature locations. While these methods have shown good results, they do have drawbacks. First, as unmanned exploration vehicles become smaller …


Performance Enhancements Of Ranging Radio Aided Navigation, Patric J. Ernsberger Mar 2009

Performance Enhancements Of Ranging Radio Aided Navigation, Patric J. Ernsberger

Theses and Dissertations

Determining the position of team members is always useful information, whether it is a team of firefighters fighting a blaze or combatants clearing a building in the field. This information becomes even more decisive for the people responsible for their safety. To accomplish this in areas denied Global Navigation Satellite System (GNSS), such as around buildings or in steep valleys, alternative methods must be used. Radio ranging systems have been a part of the navigation solution for years. They unfortunately have poor performance in certain areas, such as inside buildings, due to multipath and other errors. To improve the position …


Failure Detection Of A Pseudolite-Based Reference System Using Residual Monitoring, Michael A. Ciampa Mar 2009

Failure Detection Of A Pseudolite-Based Reference System Using Residual Monitoring, Michael A. Ciampa

Theses and Dissertations

The 746th TS uses a flight reference system referred to as the Central Inertial and GPS Test Facility (CIGTF) Reference System (CRS). Currently the CRS is the modern standard flight reference system for navigation testing, but high accuracy is dependent on the availability of GPS. A pseudolite system is currently being developed to augment the CRS and supply the capability to maintain high accuracy navigation under normal and jamming conditions. Pseudolite measurements typically contain cycle slips and other errors (such as multipath, tropospheric error, measurement noise) that can affect reliability. Past work relied on the receiver-reported signal-to-noise (SNR) value to …


Deeply-Integrated Feature Tracking For Embedded Navigation, Jeffery R. Gray Mar 2009

Deeply-Integrated Feature Tracking For Embedded Navigation, Jeffery R. Gray

Theses and Dissertations

The Air Force Institute of Technology (AFIT) is investigating techniques to improve aircraft navigation using low-cost imaging and inertial sensors. Stationary features tracked within the image are used to improve the inertial navigation estimate. These features are tracked using a correspondence search between frames. Previous research investigated aiding these correspondence searches using inertial measurements (i.e., stochastic projection). While this research demonstrated the benefits of further sensor integration, it still relied on robust feature descriptors (e.g., SIFT or SURF) to obtain a reliable correspondence match in the presence of rotation and scale changes. Unfortunately, these robust feature extraction algorithms are computationally …


Fusion Of Inertial Sensors And Orthogonal Frequency Division Multiplexed (Ofdm) Signals Of Opportunity For Unassisted Navigation, Jason G. Crosby Mar 2009

Fusion Of Inertial Sensors And Orthogonal Frequency Division Multiplexed (Ofdm) Signals Of Opportunity For Unassisted Navigation, Jason G. Crosby

Theses and Dissertations

The advent of the global positioning system (GPS) has provided worldwide high-accuracy position measurements. However, GPS may be rendered unavailable by jamming, disruption of satellites, or simply by signal shadowing in urban environments. Thus, this thesis considers fusion of Inertial Navigation Systems (INS) and Orthogonal Frequency Division Multiplexed (OFDM) signals of opportunity (SOOP) for navigation. Typical signal of opportunity navigation involves the use of a reference receiver and uses time difference of arrival (TDOA) measurements. However, by exploiting the block structure of OFDM communication signals, the need for the reference receiver is reduced or possibly removed entirely. This research uses …


Ins Aiding Using Passive, Bearings-Only Measurements Of An Unknown Stationary Ground Object, Alec E. Porter Mar 2003

Ins Aiding Using Passive, Bearings-Only Measurements Of An Unknown Stationary Ground Object, Alec E. Porter

Theses and Dissertations

The theory for Inertial Navigation System (INS) aiding using passive, bearings only measurements of an unknown stationary ground object, in the vein of optical flow measurement, is developed. Stand-alone bearings-only measurements over time of an unknown, but stationary, ground object are shown to yield estimates of the aircraft’s aerodynamic angles, viz., the angle of attack and sideslip angle. Two new equations containing the aircraft’s angular navigation variables ψ, θ, φ, γ, H, and the aerodynamic angles are derived. This allows an update of the aircraft’s attitude, thus making INS aiding using passive, bearings-only measurements possible. Moreover, the use of stadiametry, …


Ins Aiding By Tracking An Unknown Ground Object, Mursy Polat Mar 2002

Ins Aiding By Tracking An Unknown Ground Object, Mursy Polat

Theses and Dissertations

The reduction of the navigation error in an inertial navigation system by optically tracking a ground object is investigated. Multiple observations of the ground object are used. The location of the ground object is assumed unknown. A careful analysis of the measurement situation at hand reveals that by optically tracking an unknown ground object using passive, bearings-only measurements, the aircraft's angle of attack and sideslip angle can be measured. Thus, two new independent measurement equations featuring the aircraft's angular navigation variables are obtained. Hence, by optically tracking over time an unknown ground object, inertial navigation system aiding is in fact …