Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Williams Honors College, Honors Research Projects

Discipline
Keyword
Publication Year

Articles 1 - 9 of 9

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Autonomous Payload Design With Systems Engineering, Michael Downs, Christopher James Liebhart 2nd Jan 2022

Autonomous Payload Design With Systems Engineering, Michael Downs, Christopher James Liebhart 2nd

Williams Honors College, Honors Research Projects

The design will be an autonomous payload consisting of auto deployment of a drone running an autonomous mission of mapping the terrain around a grounded rocket. The project is part of the Akronauts payload project for the 2022 Spaceport competition. It will include the development of a ground station for monitoring and controlling the drone and the transfer of live data to the station and a computer on board the rocket. The project will aim to use system engineering techniques to accomplish this in the hope of providing documentation and thus insight into the best way to develop a multi-disciplinary …


Dji Drone Modification, Sean Lacey, Seth Mancuso, Bryce Mckenzie Jan 2021

Dji Drone Modification, Sean Lacey, Seth Mancuso, Bryce Mckenzie

Williams Honors College, Honors Research Projects

For this project, we set out to create a lightweight carrying case that would be mounted to a DJI Phantom 3. This case is designed to transport small packages, such as medications, from a delivery vehicle to their final destination. Based on our maximum drone lifting capacity of 600 grams, our case, servomotor, and contents had to weigh less than or equal to that value. The coronavirus pandemic has led to an increase in contactless delivery options along with the push for immunocompromised people to avoid contact with people that may be sick. Our product would help transport necessary supplies …


Analyzing And Improving Calculation And Tuning Process For A Uav, Laurel Wardell Jan 2021

Analyzing And Improving Calculation And Tuning Process For A Uav, Laurel Wardell

Williams Honors College, Honors Research Projects

The nature of this project is confidential and cannot be disclosed in detail. Generally, this project deals with the analysis of a control system of a UAV with several electric motors and gimbals. The goal of this analysis is to improve control calculations for increased stability. In addition, development has been started on an application to streamline the tuning of gains for this particular controller, allowing for more efficient use of precious flight time.


Design And Testing Of A Feed-Forward Control System For Deployable Vortex Generators Dependent On Angle Of Attack, Solomon B. Whitmire, Christopher J. Chapanar, Kirklin M. Anderson, Nickalus R. Amon, Daniel W. Chech Jan 2021

Design And Testing Of A Feed-Forward Control System For Deployable Vortex Generators Dependent On Angle Of Attack, Solomon B. Whitmire, Christopher J. Chapanar, Kirklin M. Anderson, Nickalus R. Amon, Daniel W. Chech

Williams Honors College, Honors Research Projects

A vortex generator (VG hereafter) is a common feature of an aircraft wing that disturbs the flow on the leading edge of the wing, thus energizing the boundary layer and reducing flow separation. For an aircraft experiencing flow separation, VGs can increase the lift-to-drag ratio of the wing and prevent stall; however, if flow separation isn’t an issue, the unnecessary frontal area of the VGs has the potential to produce parasitic drag. This study seeks to determine whether the use of a deployment system can improve the performance of VG’s by raising or lowering them depending on the angle of …


Space Dynamics Laboratory Payload Challenge: Autonomous Water Sampling Uav, Thomas Wheeler, Zachary Williams, Joseph Stack Jan 2019

Space Dynamics Laboratory Payload Challenge: Autonomous Water Sampling Uav, Thomas Wheeler, Zachary Williams, Joseph Stack

Williams Honors College, Honors Research Projects

The following report has been completed over the course of the Fall 2018 and Spring 2019 semesters at The University of Akron by Joseph P. Stack (Aerospace Systems Engineering), Thomas J. Wheeler (Mechanical Engineering) and Zachary M. Williams (Mechanical Engineering). The purpose of this project was to create a payload system for the Akronauts Rocket Design Team to use at the Intercollegiate Rocket Engineering Competition (IREC) Spaceport America Cup. The Competition as a challenge that is sponsored by Space Dynamics Laboratory specifically regarding payload systems. The challenge in very open-ended and allows student to identify their own scientific experiment and …


Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback Jan 2018

Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback

Williams Honors College, Honors Research Projects

One of the main hindrances of unmanned aerial vehicle (UAV) technology are power constraints. One way to alleviate some power constraints would be for two UAVs to exchange batteries while both are in flight. Autonomous mid-air battery swapping will expand the scope of UAV technology by allowing for indefinite flight times and longer missions. A single board computer will control each UAV’s flight software to respond to inputs to align with each other mid-flight. When the two UAVs have joined, mechanical components will exchange a depleted battery on the worker UAV for a freshly charged battery that belongs to the …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …


Indoor Mapping Drone, Benjamin J. Plevny, Andrew Armstrong, Miguel Lopez, Davidson Okpara Jan 2017

Indoor Mapping Drone, Benjamin J. Plevny, Andrew Armstrong, Miguel Lopez, Davidson Okpara

Williams Honors College, Honors Research Projects

This project addresses the need for an autonomous indoor mapping system that will create a 3D map of an unknown physical environment in real time. The aerial system moves and avoids obstacles autonomously, without the need for human remote control or observation. An aerial system produces a map of an unknown indoor environment by transmitting data received from the aerial device’s sensors. The transmission occurs over a wireless channel from the aerial device to a remote server for processing and storage of the data. As the transmission is done in real time, the aerial system does not require hardware for …


Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch Jan 2015

Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch

Williams Honors College, Honors Research Projects

No abstract provided.