Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Adaptive Estimation And Heuristic Optimization Of Nonlinear Spacecraft Attitude Dynamics, Joshuah A. Hess Sep 2016

Adaptive Estimation And Heuristic Optimization Of Nonlinear Spacecraft Attitude Dynamics, Joshuah A. Hess

Theses and Dissertations

For spacecraft conducting on-orbit operations, changes to the structure of the spacecraft are not uncommon. These planned or unanticipated changes in inertia properties couple with the spacecraft's attitude dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for the systems dynamics. This research has three distinct, but related, contributions to satellite attitude dynamics and estimation. In the first part of this research, MMAE routines employing parallel banks of unscented attitude …


A Monocular Slam Method To Estimate Relative Pose During Satellite Proximity Operations, Scott J. Kelly Mar 2015

A Monocular Slam Method To Estimate Relative Pose During Satellite Proximity Operations, Scott J. Kelly

Theses and Dissertations

Automated satellite proximity operations is an increasingly relevant area of mission operations for the US Air Force with potential to significantly enhance space situational awareness (SSA). Simultaneous localization and mapping (SLAM) is a computer vision method of constructing and updating a 3D map while keeping track of the location and orientation of the imaging agent inside the map. The main objective of this research effort is to design a monocular SLAM method customized for the space environment. The method developed in this research will be implemented in an indoor proximity operations simulation laboratory. A run-time analysis is performed, showing near …


Navigation Constellation Design Using A Multi-Objective Genetic Algorithm, Heather C. Diniz Mar 2015

Navigation Constellation Design Using A Multi-Objective Genetic Algorithm, Heather C. Diniz

Theses and Dissertations

In satellite constellation design, performance and cost of the system drive the design process. The Global Positioning System (GPS) constellation is currently used to provide positioning and timing worldwide. As satellite technology has improved over the years, the cost to develop and maintain the satellites has increased. Using a constellation design tool, it is possible to analyze the tradeoffs of new navigation constellation designs (Pareto fronts) that illustrate the tradeoffs between position dilution of precision (PDOP) and system cost. This thesis utilized Satellite Tool Kit (STK) to calculate PDOP values of navigation constellations, and the Unmanned Spacecraft Cost Model (USCM) …


Orbital Tori Construction Using Trajectory Following Spectral Methods, Ralph E. Bordner Iii Sep 2010

Orbital Tori Construction Using Trajectory Following Spectral Methods, Ralph E. Bordner Iii

Theses and Dissertations

By assuming the motion of a satellite about the earth’s geopotential mimics the known Kolmogorov-Arnold-Moser (KAM) solution of a lightly perturbed integrable Hamiltonian system, this research focused on applying trajectory following spectral methods to estimate orbital tori from sampled orbital data. From an estimated basis frequency set, orbital data was decomposed into multi-periodic Fourier series, essentially compressing ephemerides for long-term use. Real-world Global Positioning System (GPS) orbital tracks were decomposed and reconstructed with error from as low as few kilometers per coordinate axis over a 10-week span to tens of kilometers per coordinate axis over the same time period, depending …


Development Of A Remotely Operated Autonomous Satellite Tracking System, Michael E. Graff Mar 2010

Development Of A Remotely Operated Autonomous Satellite Tracking System, Michael E. Graff

Theses and Dissertations

AFIT is currently developing a capability to remotely and autonomously track LEO satellites using commercial telescopes. Currently, the system is capable of open-loop tracking based on Two-Line Element sets (TLEs) downloaded from NORAD’s space object catalog. The ability to actively track using a closed-loop control system would allow tracking of satellites which deviated from the published TLEs along with providing some information about the object’s new orbital elements. To accomplish closed-loop tracking, the object is imaged by a digital camera connected to a wide field-of-view (WFOV) spotting scope. Software was developed to provide azimuth and elevation inputs in order to …


Estimating Characteristics Of A Maneuvering Reentry Vehicle Observed By Multiple Sensors, Evan M. Brooks Mar 2010

Estimating Characteristics Of A Maneuvering Reentry Vehicle Observed By Multiple Sensors, Evan M. Brooks

Theses and Dissertations

Post flight analysis of ballistic missile reentry vehicles is an area of focus for the U.S. Government, especially for those involved in ballistic missile defense. Typically, this analysis incorporates either a model-driven least squares filter or a data-following Kalman filter. The research performed here developed a filter that attempts to integrate the strengths of both filters. A least squares filter operates on observation data collected during exoatmospheric free flight and a Kalman filter is used to analyze data collected lower in the atmosphere, where potential maneuvers could be performed. Additionally, the filter was written to incorporate data from multiple sensors. …


Orbit Maneuver For Responsive Coverage Using Electric Propulsion, Timothy S. Hall Mar 2010

Orbit Maneuver For Responsive Coverage Using Electric Propulsion, Timothy S. Hall

Theses and Dissertations

The use of continuous electric propulsion to manipulate a satellite’s orbit offers significant potential for enhancing coverage of a target in ways not previously considered. Elliptical orbits utilizing a very low perigee can facilitate access to the surface and atmosphere of the Earth at sub-ionosphere altitudes while counteracting atmospheric drag forces using continuous electric propulsion. Additionally, in-plane and out-of-plane manipulation of both circular and elliptical orbits can allow for passage of a satellite over a target at a given time. Sustained low perigee orbit was modeled with an initial perigee altitude of 100 km and various apogee altitudes to derive …