Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh Aug 2022

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh

McKelvey School of Engineering Theses & Dissertations

Current 3-D finite-state wake models are incapable of simulating a maneuver in which the sign of the free-stream velocity changes direction and the rotor enters its own wake -- as might occur in the case of a helicopter which ascends and then descends. It is the purpose of this work to create a 2-D finite-state wake model which is capable of handling changes in free-stream direction as a precursor to development of a 3-D model that can do the same.

The 2-D finite-state model used for reentry modifications is an existing model created by Peters, Johnson, and Karunamoorthy. By the …


Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad May 2022

Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad

Mechanical Engineering ETDs

This PhD dissertation is devoted to developing artificial intelligence (AI) applications for space missions and particle accelerators considering constraints on the computational resources. The space mission studied in this research, the Virtual Telescope for X-ray Observations (VTXO), is the mission exploiting 2 6U-CubeSats operating in a precision formation. The goal of the VTXO project is to develop a space-based, X-ray imaging telescope with high angular resolution precision. VTXO space mission is designed and the mission is optimized to increase the performance of the mission. Trajectory optimization with AI, hybrid control, control algorithms, and high performance computing are all used to …


The Effect Of Store-To-Store Energy Transfers On The Global Dynamics Of Aircraft, Guilherme Mainieri Eymael, Keegan J. Moore Apr 2022

The Effect Of Store-To-Store Energy Transfers On The Global Dynamics Of Aircraft, Guilherme Mainieri Eymael, Keegan J. Moore

UNL Student Research Days Posters, Undergraduate

This study analyzes the energy transfer mechanisms when nonlinear devices (stores) are attached to a linear model airplane. For that, a reduced-order model (ROM) was derived to simulate the first two flexible modes of vibration of the primary structure (aircraft) with one store in each wing. Each store can either be locked or unlocked. When locked, it only contributes as mass-effect, and when unlocked, it adds nonlinearity to the system. Simulations were then performed with either both stores locked, one store unlocked, or both stores unlocked. It was found that the attachment of nonlinear stores in the ROM changes the …


The Effect Of Store-To-Store Energy Transfers On The Global Dynamics Of Aircraft, Guilherme Mainieri Eymael Mar 2022

The Effect Of Store-To-Store Energy Transfers On The Global Dynamics Of Aircraft, Guilherme Mainieri Eymael

Honors Theses

This study analyzes the energy transfer mechanisms when nonlinear devices (stores) are attached to a linear model airplane. For that, a reduced-order model (ROM) was derived to simulate the first two flexible modes of vibration of the primary structure (aircraft) with one store in each wing. Each store can either be locked or unlocked. When locked, it only contributes as mass-effect, and when unlocked, it adds nonlinearity to the system. Simulations were then performed with either both stores locked, one store unlocked, or both stores unlocked. It was found that the attachment of nonlinear stores in the ROM changes the …


Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz Jan 2022

Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz

Theses and Dissertations--Mechanical Engineering

Advances in the miniaturization of powerful electronic components and motors, the democratization of global navigation satellite systems (GNSS), and improvements in the performance, safety, and cost in lithium batteries has led to the proliferation of small and relatively inexpensive unmanned aerial vehicles (UAVs). Many of these UAVs are of the multi-rotor design, however, fixed-wing designs are often more efficient than rotary-wing aircraft, leading to a reduction in the power required for a UAV of a given mass to stay airborne. Autonomous cooperation between multiple UAVs would enable them to complete objectives that would be difficult or impossible for a single …


Design, Development, And Testing Of Near-Optimal Satellite Attitude Control Strategies, Giovanni Lavezzi Jan 2022

Design, Development, And Testing Of Near-Optimal Satellite Attitude Control Strategies, Giovanni Lavezzi

Electronic Theses and Dissertations

Advances in space technology and interest toward remote sensing mission have grown in the recent years, requiring the attitude control subsystems of observation satellites to increase their performances in terms of pointing accuracy and on-board implementability. Moreover, an increased interest in small satellite missions and the recent technological developments related to the CubeSats standard have drastically reduced the cost of producing and flying a satellite mission. In this context, the proposed research aims to improve the state of the art for satellite attitude control methodologies by proposing a near-optimal attitude control strategy, simulated in a high-fidelity environment. Two strategies are …


Precise Landing Of Vtol Uavs Using A Tether, Jeremy W. Rathjen Jan 2022

Precise Landing Of Vtol Uavs Using A Tether, Jeremy W. Rathjen

Graduate Theses, Dissertations, and Problem Reports

Unmanned Aerial Vehicles (UAVs), also known as drones, are often considered the solution to complex robotics problems. The significant freedom to explore an environment is a major reason why UAVs are a popular choice for automated solutions. UAVs, however, have a very limited flight time due to the low capacity and weight ratio of current batteries. One way to extend the vehicles' flight time is to use a tether to provide power from external batteries, generators on the ground, or another vehicle. Attaching a tether to a vehicle may constrain its navigation but it may also create some opportunities for …