Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 57

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Predictive Ai Applications For Sar Cases In The Us Coast Guard, Joshua Nelson Apr 2024

Predictive Ai Applications For Sar Cases In The Us Coast Guard, Joshua Nelson

Cybersecurity Undergraduate Research Showcase

This paper explores the potential integration of predictive analytics AI into the United States Coast Guard's (USCG) Search and Rescue Optimal Planning System (SAROPS) for deep sea and nearshore search and rescue (SAR) operations. It begins by elucidating the concept of predictive analytics AI and its relevance in military applications, particularly in enhancing SAR procedures. The current state of SAROPS and its challenges, including complexity and accuracy issues, are outlined. By integrating predictive analytics AI into SAROPS, the paper argues for streamlined operations, reduced training burdens, and improved accuracy in locating drowning personnel. Drawing on insights from military AI applications …


Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro Jan 2024

Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro

Publications

The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems.


Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan Nov 2023

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan

Symposium of Student Scholars

"KWAD" or "KSU all-Weather Autonomous Drone" project was sponsored by Ultool, LLC to the KSU Research and Service Foundation to create a lightweight drone capable of capturing HD video during all-weather operations. The conditions of all-weather operation include rainfall of one inch per hour and wind speeds of up to twenty miles per hour. In addition, a global minimum structural safety factor of two is required to ensure the system's integrity in extreme weather conditions. Potential mission profiles include autonomous aerial delivery, topological mapping in high moisture areas, security surveillance, search and rescue operations, emergency transportation of medical supplies, and …


Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Nov 2023

Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

Machine learning regression techniques have shown success at feedback control to perform near-optimal pinpoint landings for low fidelity formulations (e.g. 3 degree-of-freedom). Trajectories from these low-fidelity landing formulations have been used in imitation learning techniques to train deep neural network policies to replicate these optimal landings in closed loop. This study details the development of a near-optimal, neural network feedback controller for a 6 degree-of-freedom pinpoint landing system. To model disturbances, the problem is cast as either a multi-phase optimal control problem or a triple single-phase optimal control problem to generate examples of optimal control through the presence of disturbances. …


Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Oct 2023

Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network …


Accurate Indoor Navigation System Based On Imu/Lp-Mm Integrated Method Using Kalman Filter Algorithm, Abdullah Mohammed Bahasan Mar 2023

Accurate Indoor Navigation System Based On Imu/Lp-Mm Integrated Method Using Kalman Filter Algorithm, Abdullah Mohammed Bahasan

Hadhramout University Journal of Natural & Applied Sciences

Abstract

The demand for navigation systems is rapidly increasing, especially in indoor environments which the signal of GPS is not available. Therefore the Inertial Measurement Unit (IMU) system is a suitable navigation system in such indoor environments. It usually consists of three accelerometers and three gyroscopes to determine position, velocity and attitude information, respectively, without need of any external source. But this type of navigation systems has errors growth with time due to accelerometers and gyroscopes drifts. This paper introduces indoor navigation system based on integrated IMU navigation system with proposed system called Landmarks Points-Map Matching (LP-MM) system using Kalman …


Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior Jan 2023

Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior

Graduate Theses, Dissertations, and Problem Reports

This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging …


Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes Jan 2023

Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes

UNF Graduate Theses and Dissertations

Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes.

One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is …


Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer Dec 2022

Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer

Symposium of Student Scholars

When navigating in unknown and unstructured environments, Unmanned Arial Vehicles (UAVs) can struggle when attempting to preform Simultaneous Localization and Mapping (SLAM) operations. Particularly challenging circumstance arise when an UAV may need to land or otherwise navigate through treacherous environments. As the primary UAV may be too large and unwieldly to safely investigate in these types of situations, this research effort proposes the use of actively guided CanSats for assisting in localization and mapping of unstructured environments. A complex UAV could carry multiple of these SLAM capable CanSats, and when additional mapping and localization capabilities where required, the CanSat would …


A Brief Literature Review For Machine Learning In Autonomous Robotic Navigation, Jake Biddy, Jeremy Evert Apr 2022

A Brief Literature Review For Machine Learning In Autonomous Robotic Navigation, Jake Biddy, Jeremy Evert

Student Research

Machine learning is becoming very popular in many technological aspects worldwide, including robotic applications. One of the unique aspects of using machine learning in robotics is that it no longer requires the user to program every situation. The robotic application will be able to learn and adapt from its mistakes. In most situations, robotics using machine learning is designed to fulfill a task better than a human could, and with the machine learning aspect, it can function at the highest level of efficiency and quality. However, creating a machine learning program requires extensive coding and programming knowledge that can be …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang Jan 2021

Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, the problem about localization in GNSS-denied and challenging environments is addressed. Specifically, the challenging environments discussed in this dissertation include two different types, environments including only low-resolution features and environments containing moving objects. To achieve accurate pose estimates, the errors are always bounded through matching observations from sensors with surrounding environments. These challenging environments, unfortunately, would bring troubles into matching related methods, such as "fingerprint" matching, and ICP. For instance, in environments with low-resolution features, the on-board sensor measurements could match to multiple positions on a map, which creates ambiguity; in environments with moving objects included, the …


Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic Jan 2021

Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic

Graduate Theses, Dissertations, and Problem Reports

Accurate localization is a critical component of any robotic system. During planetary missions, these systems are often limited by energy sources and slow spacecraft computers. Using proprioceptive localization (e.g., using an inertial measurement unit and wheel encoders) without external aiding is insufficient for accurate localization. This is mainly due to the integrated and unbounded errors of the inertial navigation solutions and the drifted position information from wheel encoders caused by wheel slippage. For this reason, planetary rovers often utilize exteroceptive (e.g., vision-based) sensors. On the one hand, localization with proprioceptive sensors is straightforward, computationally efficient, and continuous. On the other …


Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader Jan 2021

Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader

Graduate Theses, Dissertations, and Problem Reports

In the real world, a robotic system must operate in the presence of motion and sensing uncertainty. This is caused by the fact that the motion of a robotic system is stochastic due to disturbances from the environment, and the states are only partially observable due noise in the sensor measurements. As a result, the true state of a robotic system is unknown, and estimation techniques must be used to infer the states from the belief, which is the probability distribution over all possible states. Accordingly, a robotic system must be capable of reasoning about the quality of the belief …


Increasing The Reliability Of Software Systems On Small Satellites Using Software-Based Simulation Of The Embedded System, Matthew D. Grubb Jan 2021

Increasing The Reliability Of Software Systems On Small Satellites Using Software-Based Simulation Of The Embedded System, Matthew D. Grubb

Graduate Theses, Dissertations, and Problem Reports

The utility of Small Satellites (SmallSats) for technology demonstrations and scientific research has been proven over the past few decades by governments, universities, and private companies. While the research and technology demonstration objectives that can be provided by these SmallSats are becoming similar to larger spacecraft, their reliability still falls behind. This is in part due to the reduced cost of SmallSat missions in comparison to large spacecraft, which requires cheaper components, rapid development schedules, and accepted risk. In these missions, the importance of the flight software is often overlooked, and the software is rushed through development and not fully …


Analyzing And Improving Calculation And Tuning Process For A Uav, Laurel Wardell Jan 2021

Analyzing And Improving Calculation And Tuning Process For A Uav, Laurel Wardell

Williams Honors College, Honors Research Projects

The nature of this project is confidential and cannot be disclosed in detail. Generally, this project deals with the analysis of a control system of a UAV with several electric motors and gimbals. The goal of this analysis is to improve control calculations for increased stability. In addition, development has been started on an application to streamline the tuning of gains for this particular controller, allowing for more efficient use of precious flight time.


Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola Jul 2020

Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Use of unmanned aerial systems (UASs) in agriculture has risen in the past decade. These systems are key to modernizing agriculture. UASs collect and elucidate data previously difficult to obtain and used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this paper, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS leveraging the physical presence of the tether to launch multiple sensors along …


Semantic Segmentation Of Aerial Imagery Using U-Nets, Terence J. Yi Mar 2020

Semantic Segmentation Of Aerial Imagery Using U-Nets, Terence J. Yi

Theses and Dissertations

In situations where global positioning systems are unavailable, alternative methods of localization must be implemented. A potential step to achieving this is semantic segmentation, or the ability for a model to output class labels by pixel. This research aims to utilize datasets of varying spatial resolutions and locations to train a fully convolutional neural network architecture called the U-Net to perform segmentations of aerial images. Variations of the U-Net architecture are implemented and compared to other existing models in order to determine the best in detecting buildings and roads. A final dataset will also be created combining two datasets to …


Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak Jan 2020

Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak

Graduate Theses, Dissertations, and Problem Reports

Practical decision makers are inherently limited by computational and memory resources as well as the time available in which to make decisions. To cope with these limitations, humans actively seek methods which limit their resource demands by exploiting structure within the environment and exploiting a coupling between their sensing and actuation to form heuristics for fast decision-making. To date, such behavior has not been replicated in artificial agents. This research explores how heuristics may be incorporated into the decision-making process to quickly make high-quality decisions through the analysis of a prominent case study: the outfielder problem. In the outfielder problem, …


A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen Nov 2019

A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen

Department of Construction Engineering and Management: Faculty Publications

The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to …


Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed Jul 2019

Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed

Electronic Thesis and Dissertation Repository

In this thesis, several deterministic and stochastic attitude filtering solutions on the special orthogonal group SO(3) are proposed. Firstly, the attitude estimation problem is approached on the basis of nonlinear deterministic filters on SO(3) with guaranteed transient and steady-state measures. The second solution to the attitude estimation problem considers nonlinear stochastic filters on SO(3) with superior convergence properties with two filters being developed in the sense of Ito, and one in the sense of Stratonovich.

This thesis also presents several deterministic and stochastic pose filtering solutions developed on the special Euclidean group SE(3). The first solution includes two nonlinear deterministic …


Nonlinear Observer For Visual-Inertial Navigation Using Intermittent Landmark Measurements, Miaomiao Wang Jun 2019

Nonlinear Observer For Visual-Inertial Navigation Using Intermittent Landmark Measurements, Miaomiao Wang

Western Research Forum

The development of reliable orientation, position and linear velocity estimation algorithms for the 3D visual-inertial navigation system (VINS) is instrumental in many applications, such as autonomous underwater vehicles (AUVs), and unmanned aerial vehicles (UAVs). It is extremely important when the global position system (GPS) is not available in GPS-denied environments. Recently, observers design for VINS using landmark position measurements from Kinect sensors or stereo cameras has been increasingly investigated in the literature.

The aim of this work is to design a nonlinear observer for VINS under the assumption that landmark position measurements are intermittent. In practice, the landmark measurements are …


End To End Satellite Servicing And Space Debris Management, Aman Chandra, Himangshu Kalita, Roberto Furfaro, Jekan Thanga Feb 2019

End To End Satellite Servicing And Space Debris Management, Aman Chandra, Himangshu Kalita, Roberto Furfaro, Jekan Thanga

Space Traffic Management Conference

There is growing demand for satellite swarms and constellations for global positioning, remote sensing and relay communication in higher LEO orbits. This will result in many obsolete, damaged and abandoned satellites that will remain on-orbit beyond 25 years. These abandoned satellites and space debris maybe economically valuable orbital real-estate and resources that can be reused, repaired or upgraded for future use. Space traffic management is critical to repair damaged satellites, divert satellites into warehouse orbits and effectively deorbit satellites and space debris that are beyond repair and salvage. Current methods for on-orbit capture, servicing and repair require a large service …


Immunity-Based Framework For Autonomous Flight In Gps-Challenged Environment, Mohanad Al Nuaimi Jan 2019

Immunity-Based Framework For Autonomous Flight In Gps-Challenged Environment, Mohanad Al Nuaimi

Graduate Theses, Dissertations, and Problem Reports

In this research, the artificial immune system (AIS) paradigm is used for the development of a conceptual framework for autonomous flight when vehicle position and velocity are not available from direct sources such as the global navigation satellite systems or external landmarks and systems. The AIS is expected to provide corrections of velocity and position estimations that are only based on the outputs of onboard inertial measurement units (IMU). The AIS comprises sets of artificial memory cells that simulate the function of memory T- and B-cells in the biological immune system of vertebrates. The innate immune system uses information about …


Surgical And Medical Applications Of Drones: A Comprehensive Review, Brent Terwilliger, James C. Rosser Jr., Vudatha Vignesh, Brett C. Parker Jul 2018

Surgical And Medical Applications Of Drones: A Comprehensive Review, Brent Terwilliger, James C. Rosser Jr., Vudatha Vignesh, Brett C. Parker

Publications

Drones have the ability to gather real time data cost effectively, to deliver payloads and have initiated the rapid evolution of many industrial, commercial, and recreational applications. Unfortunately, there has been a slower expansion in the field of medicine. This article provides a comprehensive review of current and future drone applications in medicine, in hopes of empowering and inspiring more aggressive investigation.


Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri Jun 2018

Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri

Honors Theses

In any spacecraft, there are several systems that must work simultaneously to ensure a safe mission. One critical system is the ‘avionics’ system, which is comprised of all of the electronic controls on-board the spacecraft, as well as radio links to other craft and ground stations. These systems are present for both manned or unmanned spacecraft.

Throughout the history of spaceflight, there have been several disasters related to avionics failures. To make these systems safer and more reliable, two main strategies have been adopted. The first, more established approach is through use of fault-tolerant components, which can operate under a …


Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback Jan 2018

Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback

Williams Honors College, Honors Research Projects

One of the main hindrances of unmanned aerial vehicle (UAV) technology are power constraints. One way to alleviate some power constraints would be for two UAVs to exchange batteries while both are in flight. Autonomous mid-air battery swapping will expand the scope of UAV technology by allowing for indefinite flight times and longer missions. A single board computer will control each UAV’s flight software to respond to inputs to align with each other mid-flight. When the two UAVs have joined, mechanical components will exchange a depleted battery on the worker UAV for a freshly charged battery that belongs to the …


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


How Iridium Satellite Tracker Model 9602-Lp Asset Affects Span Of Control In High Altitidue Balloning, Steven Hamby Oct 2017

How Iridium Satellite Tracker Model 9602-Lp Asset Affects Span Of Control In High Altitidue Balloning, Steven Hamby

2017 Academic High Altitude Conference

The Irdium Satelitte Network has greatly increased safety in the ballooning field by enabling a greater span of control in flight awarness and termination. This enhanced awareness stems from accurate high interval GPS coordinates that can be integrated into ground station tracking software. The Iridium Network creates the ability to send activation commands remotely with high reliabilty using emails. Additionally this feature has the ability to use local rf transmiters and recievers to increase the flexibilty of cutdown designs. The Iridium Modems provides significant coverage regardless of altitude and loss of ground communication. It is marketed at econmical price point …


Ground Station Tracking System, Garret Hilton, Carter Mciver, Steven Hamby, Trevor Gahl, Casey Coffman, David Schwehr Oct 2017

Ground Station Tracking System, Garret Hilton, Carter Mciver, Steven Hamby, Trevor Gahl, Casey Coffman, David Schwehr

2017 Academic High Altitude Conference

One of the Eclipse Ballooning Project’s main goals was to stream live video of the eclipse to the internet. To accomplish this task a tracking antenna was built to follow the balloon payload. As an added challenge, the task had to be completed on a budget. The “ground station” is the center for communication between the payload and user. This system utilizes GPS position reports from the payload via the iridium network to determine the balloons position. The computer algorithm takes in additional GPS and IMU data from the ground station to determine a relative heading to orientate the antenna …