Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 26 of 26

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor Mar 2024

Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor

Faculty Publications

Once realized, autonomous aerial refueling will revolutionize unmanned aviation by removing current range and endurance limitations. Previous attempts at establishing vision-based solutions have come close but rely heavily on near perfect extrinsic camera calibrations that often change midflight. In this paper, we propose dual object detection, a technique that overcomes such requirement by transforming aerial refueling imagery directly into receiver aircraft reference frame probe-to-drogue vectors regardless of camera position and orientation. These vectors are precisely what autonomous agents need to successfully maneuver the tanker and receiver aircraft in synchronous flight during refueling operations. Our method follows a common 4-stage process …


Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won Jan 2024

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won

Faculty Publications

Taking the work conducted by the global navigation satellite system (GNSS) software-defined radio (SDR) working group during the last decade as a seed, this contribution summarizes, for the first time, the history of GNSS SDR development. This report highlights selected SDR implementations and achievements that are available to the public or that influenced the general development of SDR. Aspects related to the standardization process of intermediate-frequency sample data and metadata are discussed, and an update of the Institute of Navigation SDR Standard is proposed. This work focuses on GNSS SDR implementations in general-purpose processors and leaves aside developments conducted on …


Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl Jul 2023

Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl

Faculty Publications

One of the fundamental problems of robotics and navigation is the estimation of the relative pose of an external object with respect to the observer. A common method for computing the relative pose is the iterative closest point (ICP) algorithm, where a reference point cloud of a known object is registered against a sensed point cloud to determine relative pose. To use this computed pose information in downstream processing algorithms, it is necessary to estimate the uncertainty of the ICP output, typically represented as a covariance matrix. In this paper, a novel method for estimating uncertainty from sensed data is …


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …


Robust Error Estimation Based On Factor-Graph Models For Non-Line-Of-Sight Localization, O. Arda Vanli, Clark N. Taylor Jan 2022

Robust Error Estimation Based On Factor-Graph Models For Non-Line-Of-Sight Localization, O. Arda Vanli, Clark N. Taylor

Faculty Publications

This paper presents a method to estimate the covariances of the inputs in a factor-graph formulation for localization under non-line-of-sight conditions. A general solution based on covariance estimation and M-estimators in linear regression problems, is presented that is shown to give unbiased estimators of multiple variances and are robust against outliers. An iteratively re-weighted least squares algorithm is proposed to jointly compute the proposed variance estimators and the state estimates for the nonlinear factor graph optimization. The efficacy of the method is illustrated in a simulation study using a robot localization problem under various process and measurement models and measurement …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola Jul 2020

Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Use of unmanned aerial systems (UASs) in agriculture has risen in the past decade. These systems are key to modernizing agriculture. UASs collect and elucidate data previously difficult to obtain and used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this paper, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS leveraging the physical presence of the tether to launch multiple sensors along …


A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen Nov 2019

A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen

Department of Construction Engineering and Management: Faculty Publications

The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to …


Ion Software-Defined Radio Metadata Standard Final Report, Sanjeev Gunawardena, Alexander Rugamer, Muhammad Subhan Hameed, Markel Arizabaleta, Thomas Pany, Javier Arribas Sep 2019

Ion Software-Defined Radio Metadata Standard Final Report, Sanjeev Gunawardena, Alexander Rugamer, Muhammad Subhan Hameed, Markel Arizabaleta, Thomas Pany, Javier Arribas

Faculty Publications

The ION GNSS SDR Metadata Standard describes the formatting and other essential PNT-related parameters of sampled data streams and files. This allows processors to seamlessly consume such data without the need to input these parameters manually. The technical development phase of the initial version of the standard has now been deemed complete and is currently undergoing the last remaining procedural steps towards adoption as a formal standard by the Institute of Navigation. This paper reports on the activities of the working group since September 2018 and summarizes the final products of the standard. It also reports on examples of early …


Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu May 2019

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the …


Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins Jan 2019

Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins

Publications

Hurricane Maria struck Puerto Rico in September 2017 as a Category 4 storm causing major damage to infrastructure, agriculture and natural ecosystems, as well as the loss of many lives. Among the crops hardest hit was coffee, one of the most important crops in Puerto Rico. As a perennial system, coffee takes various production forms along a gradient from high shade/biodiversity coffee farms to low shade coffee monocultures and therefore offers an ideal means for the study of resistance and resilience of an agroecosystem to weather and climate disturbance. During the summer of 2018, 14 impacted farms across the production …


Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith Jul 2018

Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

This paper discusses results of the CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) project dedicated to developing, fielding, and evaluating integrated small unmanned aircraft systems (sUAS) for enhanced atmospheric physics measurements. The project team includes atmospheric scientists, meteorologists, engineers, computer scientists, geographers, and chemists necessary to evaluate the needs and develop the advanced sensing and imaging, robust autonomous navigation, enhanced data communication, and data management capabilities required to use sUAS in atmospheric physics. Annual integrated evaluation of the systems in coordinated field tests are being used to validate sensor performance while integrated into various sUAS platforms. …


Some Insights Into The Migration Of Double Imaginary Roots Under Small Deviation Of Two Parameters, Dina Alina Irofti, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu Feb 2018

Some Insights Into The Migration Of Double Imaginary Roots Under Small Deviation Of Two Parameters, Dina Alina Irofti, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper studies the migration of double imaginary roots of the systems’ characteristic equation when two parameters are subjected to small deviations. The proposed approach covers a wide range of models. Under the least degeneracy assumptions, we found that the local stability crossing curve has a cusp at the point that corresponds to the double root, and it divides the neighborhood of this point into an S-sector and a G-sector. When the parameters move into the G-sector, one of the roots moves to the right halfplane, and the other moves to the left half-plane. When the parameters move into the …


Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar Jan 2018

Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar

SIUE Faculty Research, Scholarship, and Creative Activity

This article studies the strong stability of scalar difference equations of continuous time in which the delays are sums of a number of independent parameters tau_i, i = 1, 2, . . . ,K. The characteristic quasipolynomial of such an equation is a multilinear function of exp(-tau_i s). It is known that the characteristic quasipolynomial of any difference equation set in the form of one-delayper- scalar-channel (ODPSC) model is also in such a multilinear form. However, it is shown in this article that some multilinear forms of quasipolynomials are not characteristic quasipolynomials of any ODPSC difference equation set. The equivalence …


Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar Jan 2018

Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar

SIUE Faculty Research, Scholarship, and Creative Activity

This article studies the strong stability of scalar difference equations of continuous time in which the delays are sums of a number of independent parameters τi, i = 1, 2, . . . , K. The characteristic quasipolynomial of such an equation is a multilinear function of e−τis. It is known that the characteristic quasipolynomial of any difference equation set in the form of one-delay-per-scalar-channel (ODPSC) model is also in such a multilinear form. However, it is shown in this article that some multilinear forms of quasipolynomials are not characteristic quasipolynomials of any ODPSC difference equation set. The equivalence between …


Crop Height Estimation With Unmanned Aerial Vehicles, Carrick Detweiler, David Anthony, Sebastian Elbaum Jan 2018

Crop Height Estimation With Unmanned Aerial Vehicles, Carrick Detweiler, David Anthony, Sebastian Elbaum

School of Computing: Faculty Publications

An unmanned aerial vehicle (UAV) can be configured for crop height estimation. In some examples, the UAV includes an aerial propulsion system, a laser scanner configured to face downwards while the UAV is in flight, and a control system. The laser scanner is configured to scan through a two-dimensional scan angle and is characterized by a maxi mum range. The control system causes the UAV to fly over an agricultural field and maintain, using the aerial propulsion system and the laser scanner, a distance between the UAV and a top of crops in the agricultural field to within a programmed …


Stereoscopic 3-D Presentation For Air Traffic Control Digital Radar Displays, Jason G. Russi, Brent T. Langhals, Michael E. Miller, Eric L. Heft May 2017

Stereoscopic 3-D Presentation For Air Traffic Control Digital Radar Displays, Jason G. Russi, Brent T. Langhals, Michael E. Miller, Eric L. Heft

AFIT Patents

An apparatus and method of presenting air traffic data to an air traffic controller are provided. Air traffic data including a two dimensional spatial location and altitude for a plurality of aircraft is received. A disparity value is determined based on the altitude for each aircraft of the plurality of aircraft. Left and right eye images are generated of the plurality of aircraft where at least one of the left and right eye images is based on the determined disparity value. The left and right eye images are simultaneously displayed to the air traffic controller on a display. The simultaneously …


General Solution Of The Wind Triangle Problem And The Critical Tailwind Angle, Nihad E. Daidzic Jan 2016

General Solution Of The Wind Triangle Problem And The Critical Tailwind Angle, Nihad E. Daidzic

Aviation Department Publications

A general analytical solution of the navigational wind-triangle problem and the calculation of the critical tailwind angle are presented in this study among other findings. Any crosswind component will effectively create a headwind component on fixed course tracks. The meaning of a route track is lost with excessive crosswinds representing the bifurcation point between the possible and the impossible navigational solutions. Any wind of constant direction and speed will effectively reduce groundspeed and increase time-of-flight on closed-loop multi-segment flights. Effective wind track component consists, in general, of true and induced components. The average groundspeed of multiple-leg flights is a harmonic …


The Robert H. Goddard Papers, Robert H. Goddard Jul 2015

The Robert H. Goddard Papers, Robert H. Goddard

Archives & Special Collections Finding Aids

Dr. Robert H. Goddard was a member of the Clark Physics Department for 29 years. Foremost American pioneer of rocket research, he laid the technical and theoretical foundations for many of the developments in long-range rockets, missiles, satellites and space flight, which collectively put us into the Space Age.

The collection includes correspondence, diaries, journals, patent applications and awards, reports, and photographs. The collection also includes original paintings by Dr. Goddard.


Cooperative 3-D Map Generation Using Multiple Uavs, Andrew Erik Lawson Jun 2015

Cooperative 3-D Map Generation Using Multiple Uavs, Andrew Erik Lawson

University Scholar Projects

This report aims to demonstrate the feasibility of building a global 3-D map from multiple UAV robots in a GPS-denied, indoor environment. Presented are the design of each robot and the reasoning behind choosing its hardware and software components, the process in which a single robot obtains a individual 3-D map entirely onboard, and lastly how the mapping concept is extended to multiple robotic agents to form a global 3-D map using a centralized server. In the latter section, this report focuses on two algorithms, Online Mapping and Map Fusion, developed to facilitate the cooperative approach. A limited selection …


Experimental Investigation Of Stochastic Parafoil Guidance Using A Graphics Processing Unit, Nathan Slegers, Andrew Brown, Jonathan Rogers Mar 2015

Experimental Investigation Of Stochastic Parafoil Guidance Using A Graphics Processing Unit, Nathan Slegers, Andrew Brown, Jonathan Rogers

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Control of autonomous systems subject to stochastic uncertainty is a challenging task. In guided airdrop applications, random wind disturbances play a crucial role in determining landing accuracy and terrain avoidance. This paper describes a stochastic parafoil guidance system which couples uncertainty propagation with optimal control to protect against wind and parameter uncertainty in the presence of impact area obstacles. The algorithm uses real-time Monte Carlo simulation performed on a graphics processing unit (GPU) to evaluate robustness of candidate trajectories in terms of delivery accuracy, obstacle avoidance, and other considerations. Building upon prior theoretical developments, this paper explores performance of the …


Indeterminate Masses, Elements And Models In Information Fusion, Florentin Smarandache Jan 2013

Indeterminate Masses, Elements And Models In Information Fusion, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper at the beginning, we make a short history of the logics, from the classical Boolean logic to the most general logic of today neutrosophic logic. We define the general logic space and give the definition of the neutrosophic logic. Then we introduce the indeterminate models in information fusion, which are due either to the existence of some indeterminate elements in the fusion space or to some indeterminate masses.

The best approach for dealing with such models is the neutrosophic logic, which is part of neutrosophy. Neutrosophic logic is connected with neutrosophic set and neutrosophic probability and statistics.


Inter Spem Et Metum, Fiat Lux, Michael A. Mota Apr 2010

Inter Spem Et Metum, Fiat Lux, Michael A. Mota

Honors Projects

Explores the design and development of a simple, 3D flight simulator. The resulting application allows users to pilot an abstract human avatar and to create free-hand strokes and physically-based explosions onto the environment through a ball discharge meta-game feature. Uses the C++ language, and the ancillary programming API libraries, OpenGL, GLEW, and Win32.


Fusion Of Imprecise Qualitative Information, Florentin Smarandache, Xinde Li, Xianzhong Dai, Jean Dezert Jan 2010

Fusion Of Imprecise Qualitative Information, Florentin Smarandache, Xinde Li, Xianzhong Dai, Jean Dezert

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper, we present a new 2-tuple linguistic representation model, i.e. Distribution Function Model (DFM), for combining imprecise qualitative information using fusion rules drawn from Dezert-Smarandache Theory (DSmT) framework. Such new approach allows to preserve the precision and efficiency of the combination of linguistic information in the case of either equidistant or unbalanced label model. Some basic operators on imprecise 2-tuple labels are presented together with their extensions for imprecise 2-tuple labels. We also give simple examples to show how precise and imprecise qualitative information can be combined for reasoning under uncertainty. It is concluded that DSmT can deal …


Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray Jan 2008

Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

There is a need for better integration of the fault tolerant and the control designs for safety critical systems such as aircraft. The dependability of current designs is assessed primarily with measures of the interconnection of fault tolerant components: the reliability function and the mean time to failure. These measures do not directly take into account the interaction of the fault tolerant components with the dynamics of the aircraft. In this paper, a first step to better integrate these designs is made. It is based on the observation that unstable systems are intrinsically unreliable and that a necessary condition for …


Performance Analysis And Validation Of A Recoverable Flight Control System In A Simulated Neutron Environment, Hong Zhang, W. Steven Gray, Oscar R. Gonzalez Jan 2005

Performance Analysis And Validation Of A Recoverable Flight Control System In A Simulated Neutron Environment, Hong Zhang, W. Steven Gray, Oscar R. Gonzalez

Electrical & Computer Engineering Faculty Publications

This paper introduces a class of stochastic hybrid models for the analysis of closed-loop control systems implemented with NASA's Recoverable Computer System. Such Recoverable Computer Systems have been proposed to insure reliable control performance in harsh environments. The stochastic hybrid models consist of either a stochastic finite-state automaton or a finite-state machine driven by a Markov input, which in turn drives a switched linear discrete-time dynamical system. Their stability and output tracking performance are analyzed using an extension of the existing theory for Markov jump-linear systems. For illustration, a stochastic hybrid model is used to calculate the tracking error performance …