Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff Oct 2023

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Accuracy Assessment Of The Ebee Using Rtk And Ppk Corrections Methods As A Function Of Distance To A Gnss Base Station, Joseph Cerreta, David Thirtyacre, Peter Miller, Scott S. Burgess, William J. Austin Jan 2023

Accuracy Assessment Of The Ebee Using Rtk And Ppk Corrections Methods As A Function Of Distance To A Gnss Base Station, Joseph Cerreta, David Thirtyacre, Peter Miller, Scott S. Burgess, William J. Austin

International Journal of Aviation, Aeronautics, and Aerospace

The use of unmanned aircraft systems to collect data for photogrammetry models has grown significantly in recent years. The accuracy of a photogrammetric model can depend on image georeferencing. The distance from a reference base station can affect the accuracy of the results. Positioning corrections data relies on precise timing measurements of satellite signals. The signals travel through the Earth's atmosphere, which introduces errors due to ionospheric and tropospheric delays. The aim of this research was to examine the eBee X and its global GNSS accuracy by comparing the RTK and PPK methods at different base station distances in photogrammetry …


Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger Apr 2022

Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger

Doctoral Dissertations and Master's Theses

The landing and reusability of space vehicles is one of the driving forces into renewed interest in space utilization. For missions to planetary surfaces, this soft landing has been most commonly accomplished with parachutes. However, in spite of their simplicity, they are susceptible to parachute drift. This parachute drift makes it very difficult to predict where the vehicle will land, especially in a dense and windy atmosphere such as Earth. Instead, recent focus has been put into developing a powered landing through gimbaled thrust. This gimbaled thrust output is dependent on robust path planning and controls algorithms. Being able to …


A Mathematical Analysis Of The Wind Triangle Problem And An Inquiry Of True Airspeed Calculations In Supersonic Flight, Leonard T. Huang, Lisa I. Cummings Jan 2021

A Mathematical Analysis Of The Wind Triangle Problem And An Inquiry Of True Airspeed Calculations In Supersonic Flight, Leonard T. Huang, Lisa I. Cummings

International Journal of Aviation, Aeronautics, and Aerospace

In the first half of this paper, we present a fresh perspective toward the Wind Triangle Problem in aerial navigation by deriving necessary and sufficient conditions, which we call "go/no-go conditions", for the existence/non-existence of a solution of the problem. Although our derivation is based on simple trigonometry and basic properties of quadratic functions, it is mathematically rigorous. We also offer examples to demonstrate how easy it is to check these conditions graphically. In the second half of this paper, we use function theory to re-examine another problem in aerial navigation, namely, that of computing true airspeed — even in …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins Jan 2019

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins

International Journal of Aviation, Aeronautics, and Aerospace

The Federal Aviation Administration (FAA) has put forth a set of regulations (Part 107) that govern small unmanned aerial system (sUAS) operations. These regulations restrict unmanned aircraft (UA) from flying over people and their operation to within visual line of sight (VLOS). However, as new applications for unmanned aerial systems (UAS) are discovered, their capabilities improve, and regulations evolve, there is an increasing desire to undertake urban operations, such as urban air mobility, package delivery, infrastructure inspection, and surveillance. This built environment poses new weather hazards that include enhanced wind shear and turbulence. The smaller physical dimensions, lower mass and …


Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins Jan 2019

Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins

Publications

Hurricane Maria struck Puerto Rico in September 2017 as a Category 4 storm causing major damage to infrastructure, agriculture and natural ecosystems, as well as the loss of many lives. Among the crops hardest hit was coffee, one of the most important crops in Puerto Rico. As a perennial system, coffee takes various production forms along a gradient from high shade/biodiversity coffee farms to low shade coffee monocultures and therefore offers an ideal means for the study of resistance and resilience of an agroecosystem to weather and climate disturbance. During the summer of 2018, 14 impacted farms across the production …


Book Review: Fundamentals Of International Aviation, Alan Bender Jun 2018

Book Review: Fundamentals Of International Aviation, Alan Bender

International Journal of Aviation, Aeronautics, and Aerospace

Not applicable.


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson Jan 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Journal of Aviation/Aerospace Education & Research

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights. …


Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic Jan 2017

Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic

International Journal of Aviation, Aeronautics, and Aerospace

Global range air navigation implies non-stop flight between any two airports on Earth. Such effort would require airplanes with the operational air range of at least 12,500 NM which is about 40-60% longer than anything existing in commercial air transport today. Air transportation economy requires flying shortest distance, which in the case of spherical Earth are Orthodrome arcs. Rhumb-line navigation has little practical use in long-range flights, but has been presented for historical reasons and for comparison. Database of about 50 major international airports from every corner of the world has been designed and used in testing and route validation. …


Early Afternoon Concurrent Panel Sessions: Commercial Space Industry Snapshot: Presentation: Small Catapult-Assisted Horizontal-Launch Reusable Rbcc Ssto Spaceplane For Economical Short-Duration Leo Access, Nihad E. Daidzic, Jan 2016

Early Afternoon Concurrent Panel Sessions: Commercial Space Industry Snapshot: Presentation: Small Catapult-Assisted Horizontal-Launch Reusable Rbcc Ssto Spaceplane For Economical Short-Duration Leo Access, Nihad E. Daidzic,

Aviation / Aeronautics / Aerospace International Research Conference

This article discusses the conceptual design, flight trajectory calculations, and utilization of the possible future horizontally-launched reusable Single-Stage-to-Orbit (SSTO) spaceplane for small payload short-duration manned/unmanned access to Low-Earth-Orbit (LEO). The 10,000 lb spaceplane would use 5,000 ft catapult-assist horizontal-launch facility and conduct powered approach and landing on conventional horizontal paved runways following the gliding atmospheric re-entry. To increase the economy of operation, the launch facility located at high elevations (4,000+ ft) equatorial region is required, such as, the plateaus in Kenya and Tanzania in Africa and/or Ecuador in South America. A 500-lb payload, including pilot-commander, is envisioned. The propulsion cycle …


Comment On Faa Rule Revision - Transport Category Aircraft, Paul F. Eschenfelder, Valter Battistoni Nov 2015

Comment On Faa Rule Revision - Transport Category Aircraft, Paul F. Eschenfelder, Valter Battistoni

Paul F. Eschenfelder

No abstract provided.


Microcontrollers In The Aviation Classroom, Padraig Houlahan Jan 2015

Microcontrollers In The Aviation Classroom, Padraig Houlahan

Aviation / Aeronautics / Aerospace International Research Conference

Modern commercial aircraft are increasingly dependent on digital technologies that detect sensor data and pilot control movements, interpret them, and then issue appropriate control signals to remote motors that move control surfaces. Because such technologies are innately complex, it would appear there is an unacceptably large academic burden on introducing them into the undergraduate pilot's curriculum .

However, in recent years there has been an explosion of interest in using micro-controllers in academic teaching (high-school and undergraduate levels) and in hobby applications, resulting in a large, online, freely available knowledgebase of techniques and solutions. Here, I demonstrate how easy it …


Improving Airplane Touchdown Control By Utilizing The Adverse Elevator Effect, Nihad E. Daidzic Ph.D., Sc.D. Oct 2014

Improving Airplane Touchdown Control By Utilizing The Adverse Elevator Effect, Nihad E. Daidzic Ph.D., Sc.D.

International Journal of Aviation, Aeronautics, and Aerospace

The main objective of this original research article is to understand the short-term dynamic behavior of the transport-category airplane during landing flare elevator control application. Increasing the pitch angle to arrest the sink rate, the elevator will have to produce negative lift to rotate the airplane’s nose upward. This has an immediate adverse effect of initially accelerating airplane downward. A mathematical model of landing flare based on the flat-Earth longitudinal dynamics of rigid airplane was developed which is realistic only on very short time-scales as pitch stiffness and damping were neglected. Pilot control scenarios using impulse and step elevator pull-up …