Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Modeling Of A Gyro-Stabilized Helicopter Camera System Using Neural Networks, Nicholas Joseph Layshot Dec 2010

Modeling Of A Gyro-Stabilized Helicopter Camera System Using Neural Networks, Nicholas Joseph Layshot

Master's Theses

On-board gimbal systems for camera stabilization in helicopters are typically based on linear models. Such models, however, are inaccurate due to system nonlinearities and complexities. As an alternative approach, artificial neural networks can provide a more accurate model of the gimbal system based on their non-linear mapping and generalization capabilities.

This thesis investigates the applications of artificial neural networks to model the inertial characteristics (on the azimuth axis) of the inner gimbal in a gyro-stabilized multi-gimbal system. The neural network is trained with time-domain data obtained from gyro rate sensors of an actual camera system. The network performance is evaluated …


Preliminary Electrical Designs For Ctex And Afit Satellite Ground Station, Arthur L. Morse Mar 2010

Preliminary Electrical Designs For Ctex And Afit Satellite Ground Station, Arthur L. Morse

Theses and Dissertations

This thesis outlines the design of the electrical components for the space-based ChromoTomography Experiment (CTEx). CTEx is the next step in the development of high-speed chromotomography at the Air Force Institute of Technology. The electrical design of the system is challenging due to the large amount of data that is acquired by the imager and the limited resources that is inherent with space-based systems. Additional complication to the design is the need to know the angle of a spinning prism that is in the field of view very precisely for each image. Without this precise measurement any scene that is …