Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Predictive Ai Applications For Sar Cases In The Us Coast Guard, Joshua Nelson Apr 2024

Predictive Ai Applications For Sar Cases In The Us Coast Guard, Joshua Nelson

Cybersecurity Undergraduate Research Showcase

This paper explores the potential integration of predictive analytics AI into the United States Coast Guard's (USCG) Search and Rescue Optimal Planning System (SAROPS) for deep sea and nearshore search and rescue (SAR) operations. It begins by elucidating the concept of predictive analytics AI and its relevance in military applications, particularly in enhancing SAR procedures. The current state of SAROPS and its challenges, including complexity and accuracy issues, are outlined. By integrating predictive analytics AI into SAROPS, the paper argues for streamlined operations, reduced training burdens, and improved accuracy in locating drowning personnel. Drawing on insights from military AI applications …


Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro Jan 2024

Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro

Publications

The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems.


Analyzing And Improving Calculation And Tuning Process For A Uav, Laurel Wardell Jan 2021

Analyzing And Improving Calculation And Tuning Process For A Uav, Laurel Wardell

Williams Honors College, Honors Research Projects

The nature of this project is confidential and cannot be disclosed in detail. Generally, this project deals with the analysis of a control system of a UAV with several electric motors and gimbals. The goal of this analysis is to improve control calculations for increased stability. In addition, development has been started on an application to streamline the tuning of gains for this particular controller, allowing for more efficient use of precious flight time.


Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri Jun 2018

Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri

Honors Theses

In any spacecraft, there are several systems that must work simultaneously to ensure a safe mission. One critical system is the ‘avionics’ system, which is comprised of all of the electronic controls on-board the spacecraft, as well as radio links to other craft and ground stations. These systems are present for both manned or unmanned spacecraft.

Throughout the history of spaceflight, there have been several disasters related to avionics failures. To make these systems safer and more reliable, two main strategies have been adopted. The first, more established approach is through use of fault-tolerant components, which can operate under a …


Implementing A Matlab Based Attitude Determination Algorithm In C Within The Polysat Software Architecture, Dominic Bertolino Mar 2013

Implementing A Matlab Based Attitude Determination Algorithm In C Within The Polysat Software Architecture, Dominic Bertolino

Computer Engineering

This project focuses on one component within a complete attitude determination and control system (ADCS) for a small satellite. The component consists of porting the algorithm that determines the current attitude of the satellite developed by AERO students / team members. The original algorithm has been developed in MATLAB code. The actual algorithm will be simulated and tested in MATLAB by the AEROs. The porting consisted of integrating the pieces into the custom PolySat software environment in C. Testing was done to verify the ported component corresponded to the original MATLAB component as well as verify its runtime on the …


Multi-Tier Exploration Concept Demonstration Mission, Jeremy Straub May 2012

Multi-Tier Exploration Concept Demonstration Mission, Jeremy Straub

Jeremy Straub

A multi-tier, multi-craft mission architecture has been proposed but, despite its apparent promise, limited use and testing of the architecture has been conducted. This paper proposes and details a mission concept and its implementation for testing this architecture in the terrestrial environment. It is expected that this testing will allow significant refinement of the proposed architecture as well as providing data on its suitability for use in both terrestrial and extra-terrestrial applications. Logistical and technical challenges with this testing are discussed.