Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng Dec 2023

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng

All Theses

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods, such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these methods use iterative safety checks to guarantee the safety of the system, which can become quite complex. The navigation problem can also be solved in feedback form using potential field methods. Navigation function, a class of potential field methods, is an analytical control design to give almost everywhere convergence properties, but under certain topological constraints and …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon Oct 2023

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon

College of Engineering Summer Undergraduate Research Program

Reaction wheels are widely used in aerospace systems as a method of attitude control. This research was focused on the design, development, and testing of a hardware-in-the-loop reaction wheel testbed that can be used for research and teaching applications related to satellite navigation and control. This project successfully utilized commercial off-the-shelf components to develop a reaction wheel capable of controlling the orientation of a freely rotating platform, as well as tracking objects using computer vision.


Optimal Path Planning For Aerial Robots Using Genetic Algorithm, Anna Puigvert I Juan Jan 2023

Optimal Path Planning For Aerial Robots Using Genetic Algorithm, Anna Puigvert I Juan

Graduate Theses, Dissertations, and Problem Reports

This thesis presents a path optimization solution for a robot in two different constrained 3-dimensional (3D) environments. The robot is required to travel from its current position to a goal position following minimum cost paths (optimal paths). The first environment has 3D obstacles that interfere with the robot’s path. The path cost for this environment accounts for the minimum distance traveled by the robot from the start to the goal position while avoiding obstacles. The second environment is the atmosphere of Venus, specifically a flyable region of this atmosphere with characteristics similar to Earth’s. This environment has strong westward winds …