Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2010

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 31

Full-Text Articles in Aerodynamics and Fluid Mechanics

Evaluation Of The Aerodynamics Of An Aircraft Fuselage Pod Using Analytical, Cfd, And Flight Testing Techniques, William C. Moonan Dec 2010

Evaluation Of The Aerodynamics Of An Aircraft Fuselage Pod Using Analytical, Cfd, And Flight Testing Techniques, William C. Moonan

Masters Theses

The purpose of this study is to investigate the execution and validity of various predictive methods used in the design of the aerodynamic pod housing NASA’s Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) on the University of Tennessee Space Institute’s Piper Navajo research aircraft. Potential flow theory and wing theory are both used to analytically predict the lift the MAPIR Pod would generate during flight; skin friction theory, empirical data, and induced drag theory are utilized to analytically predict the pod’s drag. Furthermore, a simplified computational fluid dynamics (CFD) model was also created to approximate the aerodynamic forces acting on the …


Analysis And Comparison Of Effects Of An Airfoil Or A Rod On Supersonic Cavity Flow., William Leland Fowler Dec 2010

Analysis And Comparison Of Effects Of An Airfoil Or A Rod On Supersonic Cavity Flow., William Leland Fowler

Masters Theses

The effects of an airfoil at different angles of attack and a circular cylindrical rod within the edge of the boundary layer flow at the leading edge of a cavity as a device for controlling the large pressure fluctuations (resonance tones) in the cavity were investigated. The airfoil results were compared with the rod in crossflow method positioned at the same leading edge location. The cavity used for testing corresponded to a length to depth ratio, L/D of 11.0/2.25 with a length to width ratio, L/W of 11.0/3.00 at a freestream Mach 1.84 flow. The study included measurements of dynamic …


Development Of Measurement Methods For Application To A Wind Tunnel Test Of An Advanced Transport Model, Robert S. Ehrmann Aug 2010

Development Of Measurement Methods For Application To A Wind Tunnel Test Of An Advanced Transport Model, Robert S. Ehrmann

Master's Theses

California Polytechnic State University, San Luis Obispo is currently working towards developing a Computational Fluid Dynamics (CFD) database for future code validation efforts. Cal Poly will complete a wind tunnel test on the Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA) in the National Full-Scale Aerodynamics Complex (NFAC) 40 foot by 80 foot wind tunnel at NASA Ames Research Center in the summer of 2011. The development of two measurement techniques is discussed in this work, both with the objective of making measurements on AMELIA for CFD validation.

First, the work on the application of the Fringe-Imaging Skin Friction …


Evaluation Of Geometric Scale Effects For Scramjet Isolators, Jaime Enrique Perez Aug 2010

Evaluation Of Geometric Scale Effects For Scramjet Isolators, Jaime Enrique Perez

Masters Theses

A numerical analysis was conducted to study the effects of geometrically scaling scramjet inlet-combustor isolators. Three-dimensional fully viscous numerical simulation of the flow inside constant area rectangular ducts, with a downstream back pressure condition, was analyzed using the SolidWorks Flow Simulation software. The baseline, or 1X, isolator configuration has a 1” x 2.67” cross section and 20” length. This baseline configuration was scaled up based on the 1X configuration mass flow to 10X and 100X configurations, with ten and one hundred times the mass flow rate, respectively. The isolator aspect ratio of 2.67 was held constant for all configurations. To …


Nonlinear Acoustics Of Piston-Driven Gas-Column Oscillations, Andrew William Wilson Aug 2010

Nonlinear Acoustics Of Piston-Driven Gas-Column Oscillations, Andrew William Wilson

Masters Theses

The piston-driven oscillator is traditionally modeled by directly applying boundary conditions to the acoustic wave equations; with better models re-deriving the wave equations but retaining nonlinear and viscous effects. These better models are required as the acoustic solution exhibits singularity near the natural frequencies of the cavity, with an unbounded (and therefore unphysical) solution. Recently, a technique has been developed to model general pressure oscillations in propulsion systems and combustion devices. Here, it is shown that this technique applies equally well to the piston-driven gas-column oscillator; and that the piston experiment provides strong evidence for the validity of the general …


Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk Aug 2010

Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk

Master's Theses

This thesis presents the design, calibration, and performance evaluation of a type of two-hole pressure probe anemometer known as a Conrad probe, as well as its subsequent implementation on an autonomous, compact boundary layer measurement device and its first application for subsonic in-flight measurements of a swept wing boundary layer. Calibration of the Conrad probe was accomplished using two calibration functions and a non-nulling method for resolving in-plane flow velocity direction and magnitude over a range of ±30 degrees. This approach to calibration and application offered the advantages of rapid data acquisition with lower energy consumption than alternative methods for …


Development And Use Of A Computer Program “Hyper-N” To Predict The Performance Of Air Vehicles Traveling At Hypersonic Speeds, Younes Baalla Aug 2010

Development And Use Of A Computer Program “Hyper-N” To Predict The Performance Of Air Vehicles Traveling At Hypersonic Speeds, Younes Baalla

Masters Theses

Abstract The main objective of this thesis was to develop a method than can be used to approximate the pressure forces on air vehicles traveling at hypersonic speed (Mach number > 5). The aerodynamic forces such as lift and drag were calculated from the pressure values on the surface of the airplane. Pitching moment was also tabulated. This work was initiated based on the idea of developing a flow solver proficient and capable of providing aerodynamic data (lift and drag look-up tables) for hypersonic air vehicles that can be fed to a flight simulator (used by the Aviation Systems Department) at …


A General Simulation Of An Air Ejector Diffuser System, Derick Thomas Daniel Aug 2010

A General Simulation Of An Air Ejector Diffuser System, Derick Thomas Daniel

Masters Theses

A computer model of a blow-down free-jet hypersonic propulsion test facility exists to validate facility control systems as well as predict problems with facility operation. One weakness in this computer model is the modeling of an air ejector diffuser system. Two examples of facilities that could use this ejector diffuser model are NASA Langley Research Center's 8-ft High Temp. Tunnel (HTT) and the Aero-Propulsion Test Unit (APTU) located at Arnold Engineering Development Center. Modeling an air ejector diffuser system for a hypersonic propulsion test facility includes modeling three coupled systems. These are the ejector system, the primary free-jet nozzle that …


Analysis Of A Passive Flow Control Device Via Flow Visualization Techniques, Cheryl R. Graham, Shi (Peter) Huang Jun 2010

Analysis Of A Passive Flow Control Device Via Flow Visualization Techniques, Cheryl R. Graham, Shi (Peter) Huang

Aerospace Engineering

This report details an experiment done to verify the effectiveness of a passive flow control system on a two-dimensional bluff body, blunt trailing edge model in controlling wake dimension and Karman vortex sheds. An earlier experiment by Park, et.al.[1] performed analysis via wind tunnel pressure testing and computerized model to determine the ideal proportions of such a tab design and identify the flow properties responsible for the potential drag reduction. To obtain visual verification of the existence of these concepts, a bluff body model proportionally identical to the one used by Park, et.al., was designed and tested in a water …


Conceptual Aircraft Hinge Moment Measurement System, Erin M. Hambrick, Nicole M. Thomason Jun 2010

Conceptual Aircraft Hinge Moment Measurement System, Erin M. Hambrick, Nicole M. Thomason

Aerospace Engineering

The Conceptual Aircraft Hinge Moment Measurement System (CAHMMS) was designed, prototyped, and validated to improve hinge moment estimates early in the design process. Validation was performed by integrating CAHMMS with a test wing and conducting wind tunnel tests to compare the expected theoretical, historical, and Computational Fluid Dynamics (CFD) predictions to the experimental results. As CAHMMS is an external measurement system, interference effects at the connection points were investigated. Further studies were undertaken to verify the CFD predictions with the experimental hinge moment measurements. Hinge moment results from the experimental data and the theoretical data closely correlated with less than …


Analysis Of Curvature Effects On Boundary Layer Separation And Turbulence Model Accuracy For Circulation Control Applications, Daniel Wilde Jun 2010

Analysis Of Curvature Effects On Boundary Layer Separation And Turbulence Model Accuracy For Circulation Control Applications, Daniel Wilde

Aerospace Engineering

This set of analyses involves flow separation in high curvature regions with special attention to circulation control implementations. Blown flaps of various shapes designed by Rory Golden for use on the AMELIA, or Advanced Model for Extreme Lift and Improved Aeroacoustics, short takeoff vehicle have exhibited flow separation at locations where flap curvature changes. Investigating this problem, its causes, and potential solutions, I have concluded that the separation is equally a function of the flow simulation turbulence model used, and the geometry of the flap itself. Using Gambit version 11.0.1 for grid generation and Fluent version 6.3.26 for CFD calculations, …


Blended Wing Body Form Factor Code And Model Center Integration, Simone (Simo) Alberti Jun 2010

Blended Wing Body Form Factor Code And Model Center Integration, Simone (Simo) Alberti

Aerospace Engineering

This senior project investigated a method of calculating the form factor of an arbitrarily shaped wing, such as a blended wing body, from its pressure coefficient distribution. A Matlab script was coded and integrated into an existing Model Center tool for blended wing bodies. Model Center allows a VSP model to be analyzed with PMARC, a panel code, to determine the pressure distribution over a wing. The Matlab code can then calculate the form factor and critical Mach number. It was found that the code can accurately model simple planar wings, validated against empirical equations, and is robust for blended …


Hybrid Rocket Motor, Zach Arena, Alexander Athougies, Alden Rodulfo Jun 2010

Hybrid Rocket Motor, Zach Arena, Alexander Athougies, Alden Rodulfo

Aerospace Engineering

This project involves the re-design, manufacturing, and testing of the Cal Poly Space System’s 4th iteration of an M-class 98mm hybrid rocket motor. This motor utilizes hydroxyl-terminated polybutadiene as fuel with liquid nitrous oxide as the oxidizer. Modeling and analysis was conducted on a 12 port self-impinging swirl injector and fuel manufacturing to improve performance. Several hot and cold flow tests were conducted to validate the analysis and predict performance values. Test results included two test fires resulting in an average of 212 lbf of thrust for 6 seconds with an Isp of 160 seconds and an average thrust of …


Alterations Of The Cal Poly Supersonic Wind Tunnel To Increase Accuracy And Prove The Absence Of Shockwaves, Garrett A. Lovell, Hector A. Gonzalez Jun 2010

Alterations Of The Cal Poly Supersonic Wind Tunnel To Increase Accuracy And Prove The Absence Of Shockwaves, Garrett A. Lovell, Hector A. Gonzalez

Aerospace Engineering

The calibration and improvement of the Cal Poly supersonic wind tunnel was performed in order to create a fully functional facility for supersonic testing. While investigating possible shocks present in the wind tunnel, it was discovered that the real concern was not the tunnel but the measurement systems. Both measurement systems, pitot tube and Schlieren, were evaluated and were found to be deficient. The pitot system had so much play in it that it bent backward every time the tunnel was run invalidating the results, and giving false shock data. The Schlieren system was missing one vital component to make …


Cal Poly Flight Test Platform For Instrument Development, Kyle Schaller, Ian Muceus, Aaron Ells Jun 2010

Cal Poly Flight Test Platform For Instrument Development, Kyle Schaller, Ian Muceus, Aaron Ells

Aerospace Engineering

This report summarizes a six month effort to conceptually design, develop, and build an unmanned aerial vehicle to test a boundary layer data system (BLDS) developed by Dr. Russell Westphal and his team of mechanical engineering senior design students. The project is funded by Edwards Air Force Base and the United States Air Force Research Laboratory. During the first Cal Poly quarter of project work, January 4, 2010 to March 18, 2010, the team completed a conceptual and preliminary design. During the second quarter, March 18, 2010 to June 12, 2010, the team completed the construction and initial flight test …


Development Of A Meshless Method To Solve Compressible Potential Flows, Alejandro Ramos Jun 2010

Development Of A Meshless Method To Solve Compressible Potential Flows, Alejandro Ramos

Master's Theses

The utility of computational fluid dynamics (CFD) for solving problems of engineering interest has experienced rapid growth due to the improvements in both memory capacity and processing speed of computers. While the capability now exists for the solution of the Navier-Stokes equations about complex and complete aircraft configurations, the bottleneck within the process is the time consuming task of properly generating a mesh that can accurately solve the governing partial differential equations (PDEs). This thesis explored two numerical techniques that attempt to circumvent the difficulty associated with the meshing process by solving a simplified form of the continuity equation within …


A Three Dimensional Vortex Particle-Panel Code For Modeling Propeller-Airframe Interaction, Jacob S. Calabretta Jun 2010

A Three Dimensional Vortex Particle-Panel Code For Modeling Propeller-Airframe Interaction, Jacob S. Calabretta

Master's Theses

Analysis of the aerodynamic effects of a propeller flowfield on bodies downstream of the propeller is a complex task. These interaction effects can have serious repercussions for many aspects of the vehicle, including drag changes resulting in larger power requirements, stability changes resulting in adjustments to stabilizer sizing, and lift changes requiring wing planform adjustments.

Historically it has been difficult to accurately account for these effects at any stage during the design process. More recently methods using Euler solvers have been developed that capture interference effects well, although they don't provide an ideal tool for early stages of aircraft design, …


Numerical Examination Of Flow Field Characteristics And Fabri Choking Of 2d Supersonic Ejectors, Brett G. Morham Jun 2010

Numerical Examination Of Flow Field Characteristics And Fabri Choking Of 2d Supersonic Ejectors, Brett G. Morham

Master's Theses

An automated computer simulation of the two-dimensional planar Cal Poly Supersonic Ejector test rig is developed. The purpose of the simulation is to identify the operating conditions which produce the saturated, Fabri choke and Fabri block aerodynamic flow patterns. The effect of primary to secondary stagnation pressure ratio on the efficiency of the ejector operation is measured using the entrainment ratio which is the secondary to primary mass flow ratio.

The primary flow of the ejector is supersonic and the secondary (entrained) stream enters the ejector at various velocities at or below Mach 1. The primary and secondary streams are …


Novel Inverse Airfoil Design Utilizing Parametric Equations, Kevin A. Lane Jun 2010

Novel Inverse Airfoil Design Utilizing Parametric Equations, Kevin A. Lane

Master's Theses

The engineering problem of airfoil design has been of great theoretical interest for almost a century and has led to hundreds of papers written and dozens of methods developed over the years. This interest stems from the practical implications of airfoil design. Airfoil selection significantly influences the application's aerodynamic performance. Tailoring an airfoil profile to its specific application can have great performance advantages. This includes considerations of the lift and drag characteristics, pitching moment, volume for fuel and structure, maximum lift coefficient, stall characteristics, as well as off-design performance.

A common way to think about airfoil design is optimization, the …


Theoretical Models For Wall Injected Duct Flows, Tony Saad May 2010

Theoretical Models For Wall Injected Duct Flows, Tony Saad

Doctoral Dissertations

This dissertation is concerned with the mathematical modeling of the flow in a porous cylinder with a focus on applications to solid rocket motors. After discussing the historical development and major contributions to the understanding of wall injected flows, we present an inviscid rotational model for solid and hybrid rockets with arbitrary headwall injection. Then, we address the problem of pressure integration and find that for a given divergence free velocity field, unless the vorticity transport equation is identically satisfied, one cannot find an analytic expression for the pressure by direct integration of the Navier-Stokes equations. This is followed by …


An Empirical Model Of Thermal Updrafts Using Data Obtained From A Manned Glider, Christopher E. Childress May 2010

An Empirical Model Of Thermal Updrafts Using Data Obtained From A Manned Glider, Christopher E. Childress

Masters Theses

Various methods have been used, including airborne radars, LIDAR, observation of flying birds, towers, tethered balloons, and aircraft to gain both a qualitative and quantitative representation of how heat and moisture are transported to higher altitudes and grow the boundary or mixing layer by thermal updrafts. This paper builds upon that research using an instrumented glider to determine the structure and build a mathematical model of thermals in a desert environment. During these flights, it was discovered that the traditional view of a thermal as a singular rising plume of air did not sufficiently explain what was being observed, but …


High Order Finite Elements For Lagrangian Computational Fluid Dynamics, Truman Everett Ellis Apr 2010

High Order Finite Elements For Lagrangian Computational Fluid Dynamics, Truman Everett Ellis

Master's Theses

A general finite element method is presented to solve the Euler equations in a Lagrangian reference frame. This FEM framework allows for separate arbitrarily high order representation of kinematic and thermodynamic variables. An accompanying hydrodynamics code written in Matlab is presented as a test-bed to experiment with various basis function choices. A wide range of basis function pairs are postulated and a few choices are developed further, including the bi-quadratic Q2-Q1d and Q2-Q2d elements. These are compared with a corresponding pair of low order bi-linear elements, traditional Q1-Q0 and sub-zonal pressure Q1-Q1d. Several test problems are considered including static convergence …


Assessing The V2-F Turbulence Models For Circulation Control Applications, Travis M. Storm Apr 2010

Assessing The V2-F Turbulence Models For Circulation Control Applications, Travis M. Storm

Master's Theses

In recent years, airports have experienced increasing airport congestion, partially due to the hub-and-spoke model on which airline operations are based. Current airline operations utilize large airports, focusing traffic to a small number of airports. One way to relieve such congestion is to transition to a more accessible and efficient point-to-point operation, which utilizes a large web of smaller airports. This expansion to regional airports propagates the need for next-generation low-noise aircraft with short take-off and landing capabilities. NASA has attacked this problem with a high-lift, low-noise concept dubbed the Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The goal …


Back-Pressure Effect On Shock-Train Location In A Scramjet Engine Isolator, Richard I. Paek Mar 2010

Back-Pressure Effect On Shock-Train Location In A Scramjet Engine Isolator, Richard I. Paek

Theses and Dissertations

The isolator of the scramjet decelerates the incoming high Mach flow to a lower Mach number and stabilizes the flow before it enters the combustor. Because of the unsteady combustion phenomenon and inconsistent completeness of the combustion, pressures within the combustor can vary drastically. These pressure variations can propagate forward and affect the flow field in the isolator - worst case unstarting the inlet. In this research, the shock train location versus the back-pressure is examined experimentally. The back-pressure is artificially created by symmetric (top & bottom) ramps that can close the flow area. Raising/lowering ramps result in higher/lower back-pressure. …


Investigation Of A Novel Compact Vibration Isolation System For Space Applications, Steven D. Miller Mar 2010

Investigation Of A Novel Compact Vibration Isolation System For Space Applications, Steven D. Miller

Theses and Dissertations

A novel compact vibration isolation system was designed, built, and tested for the Space Chromotomography Experiment (CTEx) being built by Air Force Institute of Technology (AFIT) researchers. CTEx is a multifunctional experimental imaging chromotomographic spectrometer designed for flight on the International Space Station (ISS) and is sensitive to jitter caused by vibrations both through the support structure as well as those produced on the optical platform by rotating optical components. CTEx demands a compact and lightweight means of vibration isolation and suppression from the ISS structure. Vibration tests conducted on an initial isolator design resulted in changes in the chosen …


Particle Size Control For Piv Seeding Using Dry Ice, Brian T. Love Mar 2010

Particle Size Control For Piv Seeding Using Dry Ice, Brian T. Love

Theses and Dissertations

Particle image velocimetry (PIV) has been carried out using solid carbon dioxide (CO2) particles as the seed material to continue the development of clean seeding for use in large-scale, closed-circuit tunnels. Testing occurred in two wind tunnels at subsonic and supersonic speeds using dry ice particles generated by allowing liquefied CO2 to expand from a small diameter injector tube through a larger diameter shroud tube. The particles were injected into the plenum and discrete solid particles, suitable for PIV measurements, were present in the test section. Data on particle size were first collected using a Malvern particle …


A Structural Dynamic Analysis Of A Manduca Sexta Forewing, Travis W. Sims Mar 2010

A Structural Dynamic Analysis Of A Manduca Sexta Forewing, Travis W. Sims

Theses and Dissertations

Micro air vehicles (MAVs) are intended for future intelligence, surveillance, and reconnaissance use. To adequately fulfill a clandestine capacity, MAVs must operate in close proximity to their intended target without eliciting counter-observation. This objective, along with DARPA’s constraint of a sub-15 centimeter span, requires future MAVs to mimic insect appearance and flight characteristics. This thesis describes an experimental method for conducting a structural analysis of a Manduca Sexta (hawkmoth) forewing. Geometry is captured via computed tomography (CT), and frequency data is collected using laser vibrometry in air and vacuum. A finite element (FE) model is constructed using quadratic beams and …


Development Of Morphing Aircraft Structure Using Smp, Soo-Chan Jee Mar 2010

Development Of Morphing Aircraft Structure Using Smp, Soo-Chan Jee

Theses and Dissertations

The U.S Air Force needs new aircraft which provide longer flight time, less fuel consumption, better aerodynamics in order to perform Air Force missions successfully as the mission environment changes rapidly. A morphing wing aircraft is considered as a potential new aircraft for those missions. This thesis explores Shape Memory Polymer (SMP) properties test results and its application for morphing wing skin. Several SMP composite laminates were considered for investigating shape changing characteristics required for morphing skin. The braided composite preforms used in making SMP composites were explored in morphing wing operating system based on the results of property tests. …


Dive Angle Sensitivity Analysis For Flight Test Safety And Efficiency, Matthew T. Schneider Mar 2010

Dive Angle Sensitivity Analysis For Flight Test Safety And Efficiency, Matthew T. Schneider

Theses and Dissertations

Flutter envelope expansion is one of the most critical types of developmental flight tests. The regions that present the most dangerous flight profiles are those test points in the negative PS realm of the flight envelope. These points develop into high-speed dives and require an accurate predictive model to prevent possible testing accidents. As a flight test is conducted, several conditions such as aircraft weight and ambient air temperature can change, causing a drastic shift in the excess power profiles resulting in significant alteration in the test conditions. Using a dive planning model, a number of parameters were analyzed to …


Cfd Analysis Of Experimental Wing And Winglet For Falconlaunch 8 And The Exfit Program, Benjamin P. Switzer Mar 2010

Cfd Analysis Of Experimental Wing And Winglet For Falconlaunch 8 And The Exfit Program, Benjamin P. Switzer

Theses and Dissertations

Reusable launch vehicles have many benefits over their expendable counterparts. These benefits range from cost reductions to increased functionality of the vehicles. Further research is required in the development of the technology necessary for reusable launch vehicles to come to fruition. The Air Force Institute of Technology’s future involvement in the ExFIT program will entail designing and testing of a new wing tip mounted vertical stabilizer in the hypersonic regime. One proposed venue for experimentation is to utilize the United States Air Force Academy’s FalconLAUNCH Program which annually designs, builds, and launches a sounding rocket capable of reaching hypersonic speeds. …