Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerodynamics and Fluid Mechanics

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng Dec 2023

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng

Dissertations

This dissertation introduces a novel vacuum technology that leverages low-pressure saturated steam and cooling-controlled condensation, offering an efficient way to utilize low-grade thermal energy sources like waste heat, steam, or solar energy. At the heart of this technology is a unique duo-chamber vacuum pump system, featuring a reciprocating piston and a heat-conductive wall, designed to generate a vacuum through steam-condensation and cooling processes.

The core of this research lies in developing and validating mechanistic models for the steam-condensation depressurization process, a complex phenomenon involving phase change and transport mechanisms. Prior to this work, these mechanisms were not sufficiently modeled or …


Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane Aug 2020

Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane

Dissertations

This dissertation is a study of the weakly nonlinear resonant interactions of a triad of gravity-capillary waves in systems of one and two fluid layers of arbitrary depth, in one and two-dimentions. For one-layer systems, resonant triad interactions of gravity-capillary waves are considered and a region where resonant triads can be always found is identified, in the two-dimensional wavevector angles-space. Then a description of the variations of resonant wavenumbers and wave frequencies over the resonance region is given. The amplitude equations correct to second order in wave slope are used to investigate special resonant triads that, providing their initial amplitude …


A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa Dec 2019

A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa

Dissertations

This dissertation explores a novel method of solving low-thrust spacecraft targeting problems using reinforcement learning. A reinforcement learning algorithm based on Deep Deterministic Policy Gradients was developed to solve low-thrust trajectory optimization problems. The algorithm consists of two neural networks, an actor network and a critic network. The actor approximates a thrust magnitude given the current spacecraft state expressed as a set of orbital elements. The critic network evaluates the action taken by the actor based on the state and action taken. Three different types of trajectory problems were solved, a generalized orbit change maneuver, a semimajor axis change maneuver, …


Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna May 2018

Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna

Dissertations

The integration of the microfluidics to the biosensor has growing demand with favorable conditions such as reduced processing time and low reagent consumption. The immuno biosensing with the microfluidic platform helped to make the electrochemical biosensing assays portable due to which this sensing mechanism can be easily implemented in point of care devices. The implementation of the biosensing in the microchannels significantly reduces the sample requirement form milli liter (mL) to micro liter (uL), and thus leads to low volume sample requirement during the sensing. The primary factors contributing to the microfluidic biosensors performance are probe immobilization, specific binding and …


On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo Aug 2015

On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo

Dissertations

Meshless methods utilizing Radial Basis Functions~(RBFs) are a numerical method that require no mesh connections within the computational domain. They are useful for solving numerous real-world engineering problems. Over the past decades, after the 1970s, several RBFs have been developed and successfully applied to recover unknown functions and to solve Partial Differential Equations (PDEs).
However, some RBFs, such as Multiquadratic (MQ), Gaussian (GA), and Matern functions, contain a free variable, the shape parameter, c. Because c exerts a strong influence on the accuracy of numerical solutions, much effort has been devoted to developing methods for determining shape parameters which provide …