Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 39

Full-Text Articles in Aerodynamics and Fluid Mechanics

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma Nov 2023

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma

Doctoral Dissertations

Flexible or flexibly-mounted structures with bluff cross-sections in flow can shed vortices at frequencies that increase with increasing flow velocity. When this shedding frequency is equal to the structure's natural frequency, the structure can oscillate. This is called vortex-induced vibrations (VIV). VIV is present in multiple fluid-structure interaction (FSI) systems which can be found in industrial, medical, and engineering applications. These oscillations can be desirable or undesirable, so understanding the physics behind this phenomenon is important. This work seeks to investigate experimentally the VIV response in the inertial-viscoelastic regime where fluid inertia and elasticity influence the system. The subcritical Newtonian …


Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky Dec 2022

Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky

Doctoral Dissertations

The adoption of mathematically formal simulation-based optimization approaches within aerodynamic design depends upon a delicate balance of affordability and accessibility. Techniques are needed to accelerate the simulation-based optimization process, but they must remain approachable enough for the implementation time to not eliminate the cost savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point iterative solvers (e.g. such as those employed to solve primal equations, sensitivity equations, design equations, and their combination). The reduced-order model-based acceleration technique collects snapshots of early iteration (pre-convergent) solutions and residuals and then uses them to project …


Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez Dec 2022

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez

Doctoral Dissertations

A computational fluid dynamics approach to evaluate the feasibility of a slotted, natural-laminar-flow airfoil designed for transonic applications, to perform as a high-lift system was developed. Reynolds-Averaged Navier-Stokes equations with a laminar-turbulent transition model for subsonic flow at representative flight conditions were used for this analysis. Baseline high-lift simulations were performed to understand the stall characteristics of the slotted, natural-laminar-flow airfoil. Maximum aerodynamic efficiency was observed with a constant slot-width. In addition, the effectiveness of the aft-element as a high-lift device was explored. Results indicate that a micro-flap is a viable option as a lift effector. These are most effective …


Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes Aug 2022

Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes

Doctoral Dissertations

Laminar-turbulent boundary-layer transition has a demonstrable impact on the performance of aerospace vehicles. The ability to accurately predict transition is integral to properly capturing relevant flow physics. Traditionally, computational fluid dynamics simulations are performed fully turbulent, meaning that laminar flow is neglected. This, however, can result in errant predictions of vehicle performance as quantities such as skin-friction drag may be overpredicted. Resultingly, development of Reynolds-averaged Navier-Stokes transition models has seen significant attention over the last decades in order to model transition and realize the performance improvements of laminar flow.

In this work, the behaviors of several different transition-prediction methods are …


Studies Of Multiphase Distribution And Flow In Bubble/ Slurry Bubble Columns With /Without Internals And Advanced Sustainable Construction Materials Using Sophisticated Measurement Techniques, Omar Farid Aug 2022

Studies Of Multiphase Distribution And Flow In Bubble/ Slurry Bubble Columns With /Without Internals And Advanced Sustainable Construction Materials Using Sophisticated Measurement Techniques, Omar Farid

Doctoral Dissertations

"Bubble/slurry bubble columns have been widely studied and employed as multiphase flow reactors with and without vertical heat-exchanging tubes. In order to understand more deeply the effect of the dense internals on the hydrodynamics of bubble/slurry bubble column, systematic experiments were performed to visualize and quantify using the radioactive particle tracking (RPT) technique. A new methodology for implementing the radioactive particle tracking (RPT) technique has been developed to investigate the effect of the dense internals on the hydrodynamics of the bubble/slurry column reactor. Monte Carlo N-Particle (MCNP) simulation has been implemented to simulate the system to generate a large number …


Experimental Investigation Of Supersonic Jets Using Optical Diagnostics, Theron James Price May 2022

Experimental Investigation Of Supersonic Jets Using Optical Diagnostics, Theron James Price

Doctoral Dissertations

The complexity of many fluid flows and phenomena is a well-known characteristic driven primarily by turbulence, which has been a focal point of study for decades. Most engineering applications in fluids will encounter turbulence, and hence the need to understand how turbulence might influence the problem at hand is omnipresent. In many turbulent flows, there are large-scale coherent structures which directly influence macro-scale processes of engineering relevance, such as noise production. Over decades of study, it has been demonstrated that similar structures are often observed across many flowfields, despite differences in characteristic parameters, and this has led to the pursuit …


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel Dec 2021

Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel

Doctoral Dissertations

Matrix normalizations are a critical component of mathematically rigorous aerodynamics analysis, especially where kinematic and thermodynamic behaviors are of interest. Here, a matrix normalization based around the entropy of a perturbation is derived according to the principles of mathematical entropy analysis and using a general definition of entropy amendable to physical phenomena such as thermal nonequilibrium and caloric and thermal imperfection. This normalization is shown to be closely related to the contemporary Chu energy normalization, expanding the range of validity of that normalization and clarifying the details of its interpretation. This relationship provides a basis for deriving other normalizations. Entropy …


Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas Oct 2021

Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas

Doctoral Dissertations

Offshore wind energy is a rapidly expanding source of renewable energy worldwide, but many aspects of offshore wind turbine behavior are still poorly understood and are not accurately captured by low-cost engineering models used in the design process. To help improve these models, computational fluid dynamics (CFD) can provide valuable insight into the complex fluid flows that affect offshore wind turbine power generation and structural loads. This research uses CFD simulations to examine three main topics important to future offshore wind development: how breaking waves affect structural loads for fixed-bottom wind turbines; how platform motions affect power generation, wake characteristics, …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Theoretical Study Of Magnetic Particles In A Shear Flow Subjected To A Uniform Magnetic Field, Christopher A. Sobecki Jan 2021

Theoretical Study Of Magnetic Particles In A Shear Flow Subjected To A Uniform Magnetic Field, Christopher A. Sobecki

Doctoral Dissertations

"Magnetic manipulation of non-spherical magnetic microparticles is important for applications in shape-based and magnetic-based separations such as waste management, disease diagnostics, drug delivery, and mining. Manipulations of magnetic microparticles also include chain formation to assemble compositions for electronics, drug loading designs, and magnetorheological fluids for smart armor, hydraulic brakes, and dampers. In microfluidic devices, separation-formation-effectiveness depends on the shape of the channel, the shear rate, and the magnetic field strength and direction.

Particle separation and chain formation involved highly complex and computational expense-demanding studies in microfluidic devices, magnetic fields, and particle- particle/wall interactions. This research took complex experimental studies and …


Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan Jan 2021

Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan

Doctoral Dissertations

Digital microfluidics in combination with emulsion microfluidics are crucial building blocks of droplet-based microfluidics, which are prevalent in a wide variety of industrial and biomedical applications, including polymer processing, food production, drug delivery, inkjet printing, and cell-based assays. Therefore, understanding the dynamics and interactions of droplets as well as the interactions between the droplets and solid surfaces are of great importance in order to improve the performance or product in these applications.

Recently, several studies in the literature have demonstrated the potential of magnetic fields in controlling the behavior of droplets in microscale; however, the fundamental mechanism behind the interesting …


Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner Dec 2020

Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner

Doctoral Dissertations

Floating offshore wind turbines are an immature technology with relatively high costs and risk associated with deployment. Of the few floating wind turbine prototypes and demonstration projects deployed in real metocean conditions, all have used standard turbines design for onshore or offshore fixed bottom conditions. This neglects the unique unsteady aerodynamics brought on by floating support structure motion. While the floating platform has been designed and optimized for a given rotor, the global system is suboptimal due to the rotor operating in conditions outside of which it was design for. If the potential offered by floating wind turbines is to …


Characterizing The Unsteady Dynamics Of Cylinder-Induced Shock Wave/Transitional Boundary Layer Interactions Using Non-Intrusive Diagnostics, Elizabeth Lara Lash Aug 2020

Characterizing The Unsteady Dynamics Of Cylinder-Induced Shock Wave/Transitional Boundary Layer Interactions Using Non-Intrusive Diagnostics, Elizabeth Lara Lash

Doctoral Dissertations

The objectives of this study were to provide time-resolved (1) characterizations of shock wave/transitional boundary layer interactions using schlieren flow visualization, and (2) correlations of unsteady shock motion to boundary layer features. The characteristics of cylinder-induced shock wave/transitional boundary layer interactions in a Mach 2 freestream flowfield were studied experimentally. The Reynolds number in the Mach 2 facility was 30,000,000 m-1. Incoming boundary layers were in transitional and fully turbulent states. Characterizing the shock wave motion was based on tracking the position of the shock wave on the model surface in schlieren images. The motion of the shock waves revealed …


Rough Airfoil Simulation For Wind Turbine Applications, Nathaniel B. Develder Mar 2020

Rough Airfoil Simulation For Wind Turbine Applications, Nathaniel B. Develder

Doctoral Dissertations

As a result of insects or other environmental fouling, surface roughness on wind turbine blades can reduce power output significantly. Superhydrophobic surfaces, though possibly a passive, cost-saving, answer to the problem of ice accretion on wind turbine rotors in cold climates, may alter turbulence development in the blade boundary layer similar to environmental roughness. This work uses an equivalent sand grain extension to the Turbulent Potential model to computationally assess the aerodynamic effects of surface roughness on the s809 airfoil, including a representational superhydrophobic surface. Rough surface boundary layer theory, application of the equivalent sand grain method, roughness parameter correlation, …


Effect Of Turbulence Model Closure Coefficient Uncertainty On Scramjet Flow Field Analysis, Martin Albert Di Stefano Jan 2020

Effect Of Turbulence Model Closure Coefficient Uncertainty On Scramjet Flow Field Analysis, Martin Albert Di Stefano

Doctoral Dissertations

“The numerical modeling of supersonic combustion ramjet (scramjet) engine flow paths plays an important role in the design of hypersonic air-breathing propulsion systems. Due to the complexity of the flow field physics and limited experimental data, numerical models possess uncertainties which should be addressed to improve the prediction accuracy of the simulations. In this study, the effect of turbulence model closure coefficient uncertainty on the Reynolds-averaged Navier-Stokes solution of a scramjet isolator and scramjet strut fuel injector flow field is investigated with an uncertainty quantification and sensitivity analysis study for commonly used turbulence models. Turbulence models considered in this work …


Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang Jan 2020

Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang

Doctoral Dissertations

“Magnetic particles and droplets have been used in a wide range applications including biomedicine, biological analysis and chemical reaction. The manipulation of magnetic microparticles or microdroplets in microscale fluid environments is one of the most critical processes in the systems and platforms based on microfluidic technology. The conventional methods are based on magnetic forces to manipulate magnetic particles or droplets in a viscous fluid.

In contrast to conventional magnetic separation method, several recent experimental and theoretical studies have demonstrated a different way to manipulate magnetic non-spherical particles by using a uniform magnetic field in the microchannel. However, the fundamental mechanism …


The Separation Of Shear-Driven Liquid Films From A Sharp Corner, Zahra Sadeghizadeh Jan 2018

The Separation Of Shear-Driven Liquid Films From A Sharp Corner, Zahra Sadeghizadeh

Doctoral Dissertations

"The separation of shear-driven liquid films occurs in many engineering applications such as port fuel injected engines, demisters, and gas transfer lines. Despite the importance of this problem, the details of the interaction between operating parameters such as liquid flow rate, gas velocities and liquid film properties on the forces at the expanding corner are still not clear. To enhance the insight on the complicated interaction between the gas and liquid phases, the shear-driven liquid flow around a corner has been studied both experimentally and analytically in this work. The effect of the complex liquid film structure on liquid mass …


Fundamental Study And Development Of Tuned Active Flow Control Actuators, Brian A. Binkley Aug 2017

Fundamental Study And Development Of Tuned Active Flow Control Actuators, Brian A. Binkley

Doctoral Dissertations

A novel, multi-level, flow-control actuator was developed using piezoceramic materials. Several actuators were fabricated in various shapes and sizes to produce a variety of effects for flow control applications. The actuators were studied in a quiescent-air bench test to understand the vibrations produced by various actuator shapes. The actuator flow-control effect was studied experimentally with flat-plate and cavity configurations, and was studied numerically using moving boundary conditions and dynamic meshing. The disturbances produced by the actuator couple with the cavity flow field producing increased cavity tones, increased vorticity, and sustainment of large-scale vorticity downstream of the cavity. The combined actuation …


Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark May 2017

Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark

Doctoral Dissertations

The goal of this work was to perform a computational investigation into the thermalhydraulic performance of water-cooled, twisted tape enabled high heat flux components at fusion relevant conditions. Fusion energy is a promising option for future clean energy generation, but the community must overcome significant scientific and engineering challenges before meeting the goal of electricity generation. One such challenge is the high heat flux thermal management of components in fusion and plasma physics experiments. Plasma facing components in the magnetic confinement devices, such as ITER or W7-X, will be subjected to extreme heat loads on the order of 10-20 MW/m …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood Aug 2016

Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood

Doctoral Dissertations

An estimate of the United States wind potential conducted in 2011 found that the energy available at an altitude of 80 meters is approximately triple the wind energy available 50 meters above ground. In 2012, 43% of all new electricity generation installed in the U.S. (13.1 GW) came from wind power. The majority of this power, 79%, comes from large utility scale turbines that are being manufactured at unprecedented sizes. Existing wind plants operate with a capacity factor of only approximately 30%. Measurements have shown that the turbulent wake of a turbine persists for many rotor diameters, inducing increased vibration …


Numerical Investigations Of A High Frequency Pulsed Gaseous Fuel Jet Injection Into A Supersonic Crossflow, Nehemiah Joel Williams Aug 2016

Numerical Investigations Of A High Frequency Pulsed Gaseous Fuel Jet Injection Into A Supersonic Crossflow, Nehemiah Joel Williams

Doctoral Dissertations

The investigation of fuel delivery mechanisms is a critical design point in the development of supersonic combustion ramjet (scramjet) technology. Primary challenges include proper penetration of the jet in the supersonic cross-flow while keeping total pressure losses and wall drag to a minimum. To reduce drag and heat loads especially at high burner entry Mach numbers it is desirable to use a minimally intrusive means of fuel delivery.

Pulsation of gaseous jets has been shown to increase penetration and mixing in subsonic flows. A limited number of experimental studies and even fewer numerical studies have suggested that when applied to …


Aeroelastic Analysis Of A Wind Turbine Blade Using The Harmonic Balance Method, Jason Charles Howison Dec 2015

Aeroelastic Analysis Of A Wind Turbine Blade Using The Harmonic Balance Method, Jason Charles Howison

Doctoral Dissertations

Most current wind turbine aeroelastic codes rely on the blade element momentum method with empirical corrections to compute aerodynamic forces on the wind turbine blades. While efficient, this method relies on experimental data and does not allow designers much flexibility for alternative blade designs. Unsteady solutions to the Navier-Stokes equations offer a significant improvement in aerodynamic modeling, but these are currently too computationally expensive to be useful in a design situation. However, steady-state solutions to the Navier-Stokes equations are possible with reasonable computation times. The harmonic balance method provides a way to represent unsteady, periodic flows through coupled a set …


Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu Aug 2015

Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu

Doctoral Dissertations

This thesis includes two main parts: (I) The CH3[methyl radical] detection in methane/air flames and (II) the rotational temperature measurement of O2[molecular oxygen] in a variety of environments by using coherent microwave Rayleigh scattering from resonance enhanced multiphoton ionization (Radar REMPI).

In first the part, from Chapter I to Chapter III, the methyl radical detection and quantitative measurements have been conducted in hydrocarbon flame with one-dimensional and two-dimensional spatial-resolved concentration distribution. Due to the proximity of the argon resonance state (4+1 REMPI by 332.5 nm) with the CH3 state (2+1 REMPI by 333.6 nm), in …


Helical Models Of The Bidirectional Vortex In A Conical Geometry, Timothy Andrew Barber Dec 2014

Helical Models Of The Bidirectional Vortex In A Conical Geometry, Timothy Andrew Barber

Doctoral Dissertations

This dissertation represents the descriptive and analytical breakdown of two new fluid dynamics solutions for vortex motion. Both solutions model the bidirectional vortex within a conical geometry. The first explored solution satisfies a simple Beltramian characteristic, where the Lamb vector is identically zero. The second solution is of the generalized Beltramian type, which fulfills the condition that the curl of the Lamb vector is equal to zero. The two Beltramian solutions describe the axisymmetric, double helical motion often found in industrial cyclone separators. Other applications include cone-shaped, vortex-driven combustion chambers and the swirling flow through conical devices. Both solutions are …


Stability Of Particle-Mean Flow Interactions In Solid And Hybrid Rockets, Trevor Sterling Elliott Dec 2014

Stability Of Particle-Mean Flow Interactions In Solid And Hybrid Rockets, Trevor Sterling Elliott

Doctoral Dissertations

Combustion instabilities associated with rocket motors as a result of unsteady components in the combustion chamber flow have been known to cause pressure oscillations. These pressure oscillations can result in changes to flight characteristics and vibrations translated to the rocket or payload. The unsteady components are comprised of two subcomponents, the vortico-acoustic fluctuations and the hydrodynamic fluctuations. As the vortico-acoustic fluctuations have been investigated in an exhaustive manner this work will focus on the hydrodynamic fluctuations. It has been known that the addition of particles increases specific impulse due to the resulting increase in combustion temperature and mass flow. They …


A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender Dec 2013

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender

Doctoral Dissertations

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate the lift and induced drag of finite wings. The circulation distribution about a real wing was represented by a superposition of infinitesimal vortex filaments. From this theory, the optimum distribution of circulation was determined to be elliptical. A consequence of this theory led to the prediction that the elliptical chord distribution on a real fixed wing would provide the elliptical circulation distribution. The author applied the same line of reasoning to lift-producing rotating cylinders in order to determine the cylindrical geometry that would theoretically produce an elliptical circulation distribution. The …


Shape Optimization Of Turbomachinery Blades Using An Adjoint Harmonic Balance Method, Huang Huang Dec 2013

Shape Optimization Of Turbomachinery Blades Using An Adjoint Harmonic Balance Method, Huang Huang

Doctoral Dissertations

The high-dimensional harmonic balance (HDHB) method has recently become popular in the field of periodic unsteady flow prediction due to its accuracy and high efficiency. In the present dissertation research, two and three-dimensional parallelized computational fluid dynamic (CFD) codes based on the HDHB method are developed and validated for unsteady turbulent flows. It is found that the stability condition for an explicit solver is highly dependent on the reduced grid frequency, a non-dimensional parameter that depends on the grid size, characteristic wave speed, and the highest frequency retained in the harmonic balance solver. Furthermore, for certain moderately and highly nonlinear …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …