Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerodynamics and Fluid Mechanics

The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner Aug 2010

The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this paper we present an isogeometric formulation for rotation-free thin shell analysis of structures comprised of multiple patches. The structural patches are C1- or higher-order continuous in the interior, and are joined with C0-continuity. The Kirchhoff–Love shell theory that relies on higher-order continuity of the basis functions is employed in the patch interior as presented in Kiendl et al. [36]. For the treatment of patch boundaries, a method is developed in which strips of fictitious material with unidirectional bending stiffness and zero membrane stiffness are added at patch interfaces. The direction of bending stiffness is chosen to be transverse …


Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk Aug 2010

Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk

Master's Theses

This thesis presents the design, calibration, and performance evaluation of a type of two-hole pressure probe anemometer known as a Conrad probe, as well as its subsequent implementation on an autonomous, compact boundary layer measurement device and its first application for subsonic in-flight measurements of a swept wing boundary layer. Calibration of the Conrad probe was accomplished using two calibration functions and a non-nulling method for resolving in-plane flow velocity direction and magnitude over a range of ±30 degrees. This approach to calibration and application offered the advantages of rapid data acquisition with lower energy consumption than alternative methods for …


Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes Feb 2010

Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes

Ming-Chen Hsu

The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T.E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555–575; T.E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg. 190 (2000) 411–430], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection–diffusion and incompressible Navier–Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square …


Simulations Of Flow Over Wind Turbines, Dnyanesh A. Digraskar Jan 2010

Simulations Of Flow Over Wind Turbines, Dnyanesh A. Digraskar

Masters Theses 1911 - February 2014

One of the most abundant sources of renewable energy is wind. Today, a considerable amount of resources are being utilized for research on harnessing the wind energy efficiently. Out of all the factors responsible for efficient energy production, the aerodynamics of flow around the wind turbine blades play an important role. This work aims to undertake aerodynamic analysis of a Horizontal Axis Wind Turbine. A steady state, incompressible flow solver for multiple reference frames, MRFSimple- Foam is modified and used for performing simulations of flow over National Renewable Energy Laboratory Phase VI wind turbine rotor. The code is first tested …


Analysis Of Wake Vortices Of A Medium Range Twin-Propeller Military Cargo Aircraft Using Statistically Designed Experiments, Burhan Sahin Jan 2010

Analysis Of Wake Vortices Of A Medium Range Twin-Propeller Military Cargo Aircraft Using Statistically Designed Experiments, Burhan Sahin

Mechanical & Aerospace Engineering Theses & Dissertations

An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle …