Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Aerospace Engineering

Distributed Sensing And System Identification Of Cantilever Beams And Plates In The Presence Of Weak Nonlinearities, Patrick Sean Heaney Apr 2018

Distributed Sensing And System Identification Of Cantilever Beams And Plates In The Presence Of Weak Nonlinearities, Patrick Sean Heaney

Mechanical & Aerospace Engineering Theses & Dissertations

While the mathematical foundation for modal analysis of continuous systems has long been established, flexible structures have become increasingly widespread and developing tools for understanding their mechanics has become increasingly important. Cantilever beams and plates, in particular, have been extensively studied due to their practical importance as approximations of more complex structures. The focus of this thesis is on understanding the dynamics of vibrating cantilever beams and plates through analytical and experimental investigation. Various models for the mechanics of these structures, of varying physical fidelity, are described and compared. A fiber optic sensing system is utilized to experimentally acquire distributed …


System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha Jan 2017

System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha

Electronic Theses and Dissertations

The advancement in automation and sensory systems in recent years has led to an increase the demand of UAV missions. Due to this increase in demand, the research community has gained interest in investigating UAV performance enhancing systems. Circulation Control (CC), which is an active control flow method used to enhance UAV lift, is a performance enhancing system currently studied. In prior research, experimental studies have shown that Circulation Control wings (CCW) implemented on class-I UAVs can reduce take-off distance by 54%. Wind tunnel tests reveal that CC improves aircraft payload capabilities through lift enhancement. Increasing aircraft payload capabilities causes …


Mathematical Equations And System Identification Models For A Portable Pneumatic Bladder System Designed To Reduce Human Exposure To Whole Body Shock And Vibration, Ezzat Aziz Ayyad Aug 2014

Mathematical Equations And System Identification Models For A Portable Pneumatic Bladder System Designed To Reduce Human Exposure To Whole Body Shock And Vibration, Ezzat Aziz Ayyad

UNLV Theses, Dissertations, Professional Papers, and Capstones

A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose …


Flight Testing Small Uavs For Aerodynamic Parameter Estimation, Adam Thomas Chase Jun 2014

Flight Testing Small Uavs For Aerodynamic Parameter Estimation, Adam Thomas Chase

Master's Theses

A flight data acquisition system was developed to aid unmanned vehicle designers in verifying the vehicle's design performance. The system is reconfigurable and allows the designer to choose the correct combination of complexity, risk, and cost for a given flight test. The designer can also reconfigure the system to meet packaging and integration requirements. System functionality, repeatbility, and accuracy was validated by collecting data during multiple flights of a radio-controlled aircraft. Future work includes sensor fusion, thrust prediction methods, stability and control derivative estimation, and growing Cal Poly's small-scale component aerodynamic database.


Modeling Of A Gyro-Stabilized Helicopter Camera System Using Neural Networks, Nicholas Joseph Layshot Dec 2010

Modeling Of A Gyro-Stabilized Helicopter Camera System Using Neural Networks, Nicholas Joseph Layshot

Master's Theses

On-board gimbal systems for camera stabilization in helicopters are typically based on linear models. Such models, however, are inaccurate due to system nonlinearities and complexities. As an alternative approach, artificial neural networks can provide a more accurate model of the gimbal system based on their non-linear mapping and generalization capabilities.

This thesis investigates the applications of artificial neural networks to model the inertial characteristics (on the azimuth axis) of the inner gimbal in a gyro-stabilized multi-gimbal system. The neural network is trained with time-domain data obtained from gyro rate sensors of an actual camera system. The network performance is evaluated …


Setpoint Tracking Predictive Control In Chemical Processes Based On System Identification, Sinchai Chinvorarat Jan 1999

Setpoint Tracking Predictive Control In Chemical Processes Based On System Identification, Sinchai Chinvorarat

Mechanical & Aerospace Engineering Theses & Dissertations

A Kraft recovery boiler in a pulp-paper mill provides a means for recovery of the heat energy in spent liquor and recovery of inorganic chemicals while controlling emissions. These processes are carried out in a combined chemical recovery unit and steam boiler that is fired with concentrated black liquor and which produces molten smelt. Since the recovery boiler is considered to be an essential part of the pulp-paper mill in terms of energy resources, the performance of the recovery boiler has to be controlled to achieve the highest efficiency under unexpected disturbances.

This dissertation presents a new approach for combining …


Input Design For Systems Under Identification Using Indirect And Direct Methods, Marco P. Schoen Mar 1997

Input Design For Systems Under Identification Using Indirect And Direct Methods, Marco P. Schoen

Mechanical & Aerospace Engineering Theses & Dissertations

The motivation for system identification can be manifold. In this work, the provocation to identify unknown system characteristics is derived from the control engineering point of view. That is, one intends to design a control strategy based on the identified system properties. The used system identification methods are the Open-Loop Kalman filter System Identification method (OKID) and the Closed-Loop System Identification method (CLID). It is shown that the quantitative largest error of the system identification is given by its model representation, that is the attempt to describe a system with model parameters which poses a linear relationship with the input/output …


Integrated System Identification And Adaptive State Estimation For Control Of Flexible Space Structures, Chung-Wen Chen Jul 1991

Integrated System Identification And Adaptive State Estimation For Control Of Flexible Space Structures, Chung-Wen Chen

Mechanical & Aerospace Engineering Theses & Dissertations

Accurate state information is crucial for control of flexible space structures in which the state feedback strategy is used. The performance of a state estimator relies on accurate knowledge about both the system and its disturbances, which are represented by system model and noise covariances respectively. For flexible space structures, due to their great flexibility, obtaining good models from ground testing is not possible. In addition, the characteristics of the systems in operation may vary due to temperature gradient, reorientation, and deterioration of material, etc. Moreover, the disturbances during operation are usually not known. Therefore, adaptive methods for system identification …