Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Aerospace Engineering

A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon Jan 2021

A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon

Honors Undergraduate Theses

The modified Fiala model from Westin was implemented with conditions for circulatory shock and hypothermia. The purpose is to model Emergency Preservation and Resuscitation (EPR), a procedure for inducing hypothermia in patients. Cold tissue temperatures reduce metabolism exponentially, greatly extending the window of anaerobic metabolic activity before permanent deoxygenation damage. EPR in patients undergoing hypovolemic shock can preserve the patient until primary surgical care and blood transfusions are attainable., thereby increasing survival rates. The main applications of EPR are military in-situ stabilization for transit to clinical care and extending the survivability of patients requiring prolonged surgery before blood transfusion. The …


Gasdynamic Phenomena And Propulsive Performance Of Pulse Detonation Engines, James T. Pearce May 2019

Gasdynamic Phenomena And Propulsive Performance Of Pulse Detonation Engines, James T. Pearce

Mechanical and Aerospace Engineering Dissertations

The pulsed detonation engine (PDE) is an advanced propulsion system that makes use of intermittent detonations to provide thrust. In recent decades, the PDE has been at the center of various propulsion research efforts focused on practical implementation of a reliable detonation-based engine for aerospace propulsion applications. However, many design challenges remain to be solved due to the PDEs unsteady operating characteristics. In particular, the unsteady nature of the thrust chamber flow field inherent to the PDE operation makes the design of nozzles aimed at adequately expanding the burned detonation products especially difficult. In order to address this design challenge, …


A Numerical Study Of The Limiting Cases Of Cylinder-Induced Shock Wave/Boundary Layer Interactions, Stefen Albert Lindorfer May 2017

A Numerical Study Of The Limiting Cases Of Cylinder-Induced Shock Wave/Boundary Layer Interactions, Stefen Albert Lindorfer

Masters Theses

One of the limiting factors in the design of supersonic and hypersonic vehicles remains the prediction and control of the high aerodynamic, thermodynamic, acoustic, and structural loads generated by a shock wave/boundary layer interaction (SWBLI or SBLI). In conjunction with an experimental campaign produced within the research group, a numerical study was performed using a semi-infinite cylinder to generate a SWBLI at Mach 1.88 with both laminar and turbulent boundary layers. The goals were not only to better understand the complex flow surrounding the cylinder-induced turbulent interaction, but also to establish the interaction bounds of the limiting cases of a …


Development Of Cal Poly's Shock Table, Christopher D. Risner Dec 2016

Development Of Cal Poly's Shock Table, Christopher D. Risner

Master's Theses

Shock is one of the environmental tests that a spacecraft must pass before being cleared for launch. Shock testing poses a challenging data acquisition issue and careful selection of equipment is crucial to creating a successful shock test facility. Cal Poly’s CubeSat programs can currently perform all environmental testing other than shock themselves, so a quality shock table would be useful. Previous groups of students had developed a shock table, and this paper details the improvement and characterization of that shock table’s behavior. Several adjustable parameters were tested and documented to discover trends in the shock table’s response to an …


Strain Rate And Orientation Dependencies Of The Strength Of Single Crystalline Copper Under Compression, Virginie Dupont, Timothy C. Germann Oct 2012

Strain Rate And Orientation Dependencies Of The Strength Of Single Crystalline Copper Under Compression, Virginie Dupont, Timothy C. Germann

Aerospace Engineering - Daytona Beach

Molecular dynamics (MD) simulations are used to model the compression under uniaxial strain of copper single crystals of different orientations at various temperatures and strain rates. Uniaxial strain is used because of the close resemblance of the resulting stress state with the one behind a shock front, while allowing a control of parameters such as strain rate and temperature to better understand the behavior under complex dynamic shock conditions. Our simulations show that for most orientations, the yield strength of the sample is increased with increasing strain rate. This yield strength is also dependent on the orientation of the sample, …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Heat, Mass And Force Flows In Supersonic Shockwave Interactions, John Michael Dixon May 2012

Heat, Mass And Force Flows In Supersonic Shockwave Interactions, John Michael Dixon

UNLV Theses, Dissertations, Professional Papers, and Capstones

There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid …


State Of The Art / Novel Rotary-Turbo-Inflow Tech / Featured Development - Gearturbine Project - Atypical Motor Engine Type, Carlos Barrera Jan 2012

State Of The Art / Novel Rotary-Turbo-Inflow Tech / Featured Development - Gearturbine Project - Atypical Motor Engine Type, Carlos Barrera

Carlos Barrera

GEARTURBINE PROJECT Atypical InFlow Thermodynamic Technology Proposal Submission Novel Fueled Motor Engine Type

*State of the art Innovative concept Top system Higher efficient percent. Have similar system of the Aeolipile Heron Steam device from Alexandria 10-70 AD. -New Form-Function Motor-Engine Device. Next Step, Epic Design Change, Broken-Seal Revelation. -Desirable Power-Plant Innovation.

YouTube; * Atypical New • GEARTURBINE / Retrodynamic = DextroRPM VS LevoInFlow + Ying Yang Thrust Way Type - Non Waste Looses

-This innovative concept consists of hull and core where are held all 8 bteps of the work-flow which make the concept functional. The core has several gears …


Computation Of Shock Induced Noise In Imperfectly Expanded Supersonic Jets, Bulent Imamoglu Jan 2004

Computation Of Shock Induced Noise In Imperfectly Expanded Supersonic Jets, Bulent Imamoglu

Mechanical & Aerospace Engineering Theses & Dissertations

Screech noise exists only in imperfectly expanded jets. The exit pressure of imperfectly expanded jets does not match ambient pressure, so expansion or compression waves appear out of the nozzle and generate shock cell patterns. Screech is generated by the interaction of shock cells and instability waves. Many experiments and computations have been done to model screech noise, but it is not yet a very well known subject.

A numerical study is performed to understand screech generation mechanisms and to compare with latest experiments. A supersonic underexpanded jet of 25.4 mm diameter is modeled for cases of Mach numbers of …