Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Composites

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 37

Full-Text Articles in Aerospace Engineering

Damage Control Measures In Composites: Focus On Damage Tolerance Of Aerospace Structures, Kais Jribi Apr 2024

Damage Control Measures In Composites: Focus On Damage Tolerance Of Aerospace Structures, Kais Jribi

Doctoral Dissertations and Master's Theses

Barely Visible Impact Damage (BVID) in composite materials presents a stealthy yet significant risk to structural integrity, particularly challenging due to its elusive nature. The approach adopted here diverges from traditional methodologies, focusing on the novel application of Digital Image Correlation (DIC) to map surface area changes during in-situ Compression After Impact (CAI) tests. This technique allows for an in-depth analysis of planar strains along the x and y axes, shedding light on the material's behavior under stress.

A pivotal advancement lies in developing a method for precisely identifying when BVID-induced delamination recommences. By meticulously analyzing strain pattern deviations along …


Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari Oct 2023

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris Oct 2023

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris

Mechanical & Aerospace Engineering Theses & Dissertations

Post-cure through thickness reinforcement is a method used to increase the mechanical properties of composite laminates in the transverse direction. This study conducted a test on skin-stringer structures bonded together in three configurations using an epoxy or thermoplastic adhesive at the interface with reinforcing pins inserted through the laminate thickness located at the edge of the stringer at differing angles between -30º and 30º. The fabrication of these samples in configurations B and C consisted of the use of carbon fiber prepeg laminate at a ply orientation of [02902]2s for the skin and [0 90] …


Study Of A Carbon Fiber Reinforced Polymer Composite Using A Biobased Polyurethane As A Thermosetting Resin, Teddy Mageto May 2023

Study Of A Carbon Fiber Reinforced Polymer Composite Using A Biobased Polyurethane As A Thermosetting Resin, Teddy Mageto

Electronic Theses & Dissertations

Carbon Fiber Reinforced Polymer composites (CFRP) have garnered increasing interest in recent years especially in the aerospace and automobile industries where they are gradually replacing metals as structural materials. This is owing to their light weight, high strength, high modulus, and excellent strength-to-weight ratio. Polymers are typically used as thermosetting resins in these composites. However, the synthesis of polymers currently is conducted via petrochemical processes which leads to adverse effects on the environment. To this end, in this work a biobased Polyurethane (PU) was used as a thermosetting resin in a CFRP. The biobased PU was synthesized by the reaction …


Fusion Bonding Behavior Of 3d Printed Pa6/Cf Composites Via Post Fabrication Compaction, Gonzalo Fernandez Mediavilla May 2023

Fusion Bonding Behavior Of 3d Printed Pa6/Cf Composites Via Post Fabrication Compaction, Gonzalo Fernandez Mediavilla

Mechanical & Aerospace Engineering Theses & Dissertations

Additive manufacturing (AM) is becoming a robust production technology for aerospace, healthcare, and construction industries among others. Fused Deposition Modelling (FDM) is one of the methods most used to 3D print products. FDM has limitation due to interlayer adhesion and restriction imposed by the printing direction. Specially with AM composites, as reinforced nylon PA6 with short fibers, parts show more strength along the direction of the filament due to the alignment of the carbon fibers, but weaker in other directions. The proposed method to solve this issue is to print parts separately and join them together by fusion bonding. PA6/CF …


Surface Preparation Study, Ryan Ferguson Jan 2023

Surface Preparation Study, Ryan Ferguson

Williams Honors College, Honors Research Projects

This work explores a custom air atmospheric pressure plasma treatment (APPT) machine’s effectiveness in cleaning and chemically activating a CFRP surface. It is explore by implementing water contact angle (WCA) measurements, water-break free (WBF) testing, and adhesive tubular lap-joint (TLJ) tensile testing. An 8x3 test matrix of different machine parameters is defined with the bounding conditions being the machine’s capabilities and industry standard recommendations. Each configuration of the test matrix is explored after treatment at multiple time intervals up to 2 weeks afterwards to gain insight into the outlife of the treatments with the intention of adhesively bonding to the …


Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon Jul 2022

Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon

Doctoral Dissertations and Master's Theses

Soaring birds have evolved to fly for long periods of time without flapping their wings. Inspired by the flight of these birds, the proposed thesis presents an experimental investigation focused on wingtip devices designed based on biomimicry. The overarching engineering objective was to reduce the induced drag as a means to improve the fuel efficiency via these experimental wingtips. An associated secondary objective was to establish a method for manufacturing complex structures suitable for wing tunnel testing. A manufacturing technique that involved using composite weaves to reinforce additively manufactured structures was developed. This technique has the potential to reduce manufacturing …


Manufacturing Process Considerations When Transitioning From Thermoset To Thermoplastic Composite Material For Urban Air Mobility Propellers, Samuel Leonard Jones Iii Apr 2022

Manufacturing Process Considerations When Transitioning From Thermoset To Thermoplastic Composite Material For Urban Air Mobility Propellers, Samuel Leonard Jones Iii

Theses and Dissertations

Aerospace manufacturing has seen continually increased use of carbon fiber reinforced polymers in aircraft structures. The favorable strength to weight ratios, as well as the increased resistance to fatigue and corrosion, compared to metallic structures, provide a common argument for further research and development of composite airframes. Two main classes of carbon fiber reinforced polymers can be distinguished, thermosetting polymers and thermoplastic polymers. Thermoset polymers have been relied on for decades for the ability to reliably produce strong laminates for aircraft structures. By comparison thermoplastic polymers experience less comparable utilization on primary structures despite boasting similar or greater performance capabilities …


Discontinuous Recycled And Repurposed Carbon Fiber Reinforced Thermoplastic Organosheet Composites, Philip R. Barnett Dec 2020

Discontinuous Recycled And Repurposed Carbon Fiber Reinforced Thermoplastic Organosheet Composites, Philip R. Barnett

Doctoral Dissertations

There is a significant need for low cost, high volume composites in the automotive industry to aid in vehicle lightweighting and safety. The current state-of-the-art severely compromises the mechanical properties of composites to achieve cost and cycle time goals. In this dissertation, a novel composite format, termed discontinuous carbon fiber organosheets, using recycled and repurposed carbon fibers in a thermoplastic matrix is developed and studied. Unlike traditional composites, the long fiber length and rapid processing time yield mechanical properties and cycle times competitive with automotive metals.

Several studies were performed to characterize this new material format. First, samples were manufactured …


Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn Oct 2020

Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn

Mechanical & Aerospace Engineering Theses & Dissertations

Commercial and private aircraft have a need for strong yet light materials in order to have the most ideal performance possible. This study looks at the use of thin-ply composite materials to improve the performance of aircraft structures by means of weight savings and/or strength increase when compared to laminates that are composed of exclusively standard-ply materials. In order to perform an investigation based solely on finite element analysis, validation efforts were performed using test data from open hole tension, open hole compression, notched tension, and notched compression specimens. Once the models were validated sufficiently, the same modeling practices were …


Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo Aug 2020

Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo

Mechanical & Aerospace Engineering Theses & Dissertations

With an ever-increasing demand for composites, more ways of manufacturing them are becoming popular and widely used. Stitching of dry fabrics is an efficient method for improving delamination resistance. Discontinuous fiber reinforced composites can be used as a lightweight alternative material for metals through a process of compression molding, which allows for complex shape manufacturing while offering structural grade mechanical properties.

This study demonstrates how the stitching of dry fabrics can be adapted to more complex surfaces. The consequences of stitching of curvilinear surfaces can result in defect formation. Therefore, to understand the physical formation of possible defects, experimental characterization …


Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders Apr 2020

Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders

Mechanical & Aerospace Engineering Theses & Dissertations

Repair and reinforcement of composite honeycomb structures is an area of concern as higher demands are being placed on high strength, lightweight structural materials, such as carbon fiber reinforced plastics and corresponding honeycomb structures. A common issue with these structures is when a delamination in the facesheet may form and spread, leading to a failure scenario. An investigation of adding a through thickness reinforcement (TTR) to these structures at the sample level that undergo four-point-bending, tension, and joining methods is conducted throughout this thesis. The embedding of pultruded carbon fiber rods is found to be an ideal addition to composite …


Peridynamic Approaches For Damage Prediction In Carbon Fiber And Carbon Nanotube Yarn Reinforced Polymer Composites, Forrest E. Baber Jan 2020

Peridynamic Approaches For Damage Prediction In Carbon Fiber And Carbon Nanotube Yarn Reinforced Polymer Composites, Forrest E. Baber

Theses and Dissertations

Aerospace structures are increasingly utilizing advanced composites because of their high specific modulus and specific strength. While the introduction of these material systems can dramatically decrease weight, they pose unique certification challenges, often requiring extensive experimental testing in each stage of the design cycle. The expensive and time-consuming nature of experimental testing necessitates the advancement of simulation methodologies to both aid in the certification process and assist in the exploration of the microstructure design space.

Peridynamic (PD) theory, originating from Sandia National Lab’s in the early 2000’s, is a nonlocal continuum-based method that reformulates the equation of motion into an …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Human-Robot Collaborative Force-Controlled Micro-Drilling For Advanced Manufacturing And Medical Applications, Parimal Mahesh Prajapati Jan 2018

Human-Robot Collaborative Force-Controlled Micro-Drilling For Advanced Manufacturing And Medical Applications, Parimal Mahesh Prajapati

Mechanical & Aerospace Engineering Theses & Dissertations

Robotic drilling finds applications in diverse fields ranging from advanced manufacturing to the medical industry. Recent advances in low-cost, and human-safe, collaborative robots (e.g., Sawyer) are enabling us to rethink the possibilities in which robots can be deployed for such tedious and time-consuming tasks. This thesis presents a robotic drilling methodology with features of force-control enabled micro-drilling and human-robot collaboration to reduce programming efforts and enhance drilling performance. A Sawyer robot from Rethink Robotics, which offers safe physical interactions with a human co-worker, kinesthetic teaching, and force control, is used as the test bed. The robot’s end-effector was equipped with …


A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim Dec 2017

A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim

Master's Theses

A Comparison Study of Composite Laminated Plates with Holes under Tension

A study was conducted to quantify the accuracy of numerical approximations to deem sufficiency in validating structural composite design, thus minimizing, or even eliminating the need for experimental test. Error values for stress and strain were compared between Finite Element Analysis (FEA) and analytical (Classical Laminated Plate Theory), and FEA and experimental tensile test for two composite plate designs under tension: a cross-ply composite plate design of [(0/90)4]s, and a quasi-isotropic layup design of [02/+45/-45/902]s, each with a single, centered hole of 1/8” diameter, and 1/4" diameter (four sets …


The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney Feb 2017

The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney

Master's Theses

While composite structures exhibit exceptional strength and weight saving possibilities for engineering applications, sometimes their overall cost and/or material performance can limit their usage when compared to conventional structural materials. Meanwhile ‘biocomposites’, composite structures consisting of natural fibers (i.e. bamboo fibers), display higher cost efficiency and unique structural benefits such as ‘sustainability’. This analysis will determine if the integration of these two different types of composites are beneficial to the overall structure. Specifically, the structure will consist of a one internal bamboo veneer biocomposite ply; and two external carbon fiber weave composite plies surrounding the bamboo biocomposite. To acquire results …


Wrinkling Of Functionally Graded Sandwich Structures Subject To Biaxial And In-Plane Shear Loads, Harold Costa Jan 2017

Wrinkling Of Functionally Graded Sandwich Structures Subject To Biaxial And In-Plane Shear Loads, Harold Costa

Masters Theses

"Benefits of a functionally graded core increasing wrinkling stability of sandwich panels have been demonstrated in a recent paper [1] where a several-fold increase in the wrinkling stress was observed, without a significant weight penalty, using a stiffer core adjacent to the facings. In the present paper wrinkling is analyzed in case where the facings are subject to biaxial compression and/or in-plane shear loading and the core is arbitrary graded through-the-thickness. Two issues addressed are the effect of biaxial or in-plane shear loads on wrinkling stability of panels with both graded and ungraded core and the verification that functional grading …


Mens Doped Adhesive And Influence On Fracture Toughness, Kao Z. Yang Mar 2016

Mens Doped Adhesive And Influence On Fracture Toughness, Kao Z. Yang

FIU Electronic Theses and Dissertations

Composites are in high demand; however, fasteners are often required for joining process and can reduce their advantages. One solution is adhesive bonding, but uncertainty exists regarding long term durability and the ability to interrogate bonds noninvasively. One potential solution to qualify bond integrity over its service life is to dope an adhesive with magneto-electric nanoparticles (MENs). MENs can yield output magnetic signatures that are influenced by bond quality and damage state. In this study, adhesives have been doped with MENs prior to bonding at 1% volume concentration. For optimum implementation, this health monitoring system should be evaluated for effects …


Effect Of Low Velocity Impact On The Vibrational Behavior Of A Composite Wing, Richard M. De Luna Mar 2016

Effect Of Low Velocity Impact On The Vibrational Behavior Of A Composite Wing, Richard M. De Luna

Master's Theses

Impact strength is one of the most important structural properties for a designer to consider, but it is often the most difficult to quantify or measure. A major concern for composite structures in the field is the effect of foreign objects striking composites because the damage is often undetectable by visual inspection. The objective for this study was to determine the effectiveness of using dynamic testing to identify the existence of damage in a small scale composite wing design. Four different impact locations were tested with three specimens per location for a total of 12 wings manufactured. The different impact …


Dynamic Transverse Debondong Of A Single S-2 Fiber, Stephen E. Levine Feb 2016

Dynamic Transverse Debondong Of A Single S-2 Fiber, Stephen E. Levine

Open Access Theses

Fiber reinforced composites are becoming increasingly common due to their high strength to weight ratios as compared to more conventional materials. Along with this increased used comes the need to have a higher level of understanding of the material characteristics. Specifically, the interface between the fiber and matrix is of particular interest. Loss of adhesion at this interface, known as debonding, can greatly decrease material strength. There has been significant research into debdonding phenomena at low strain rates. However, there is still a need for further insight at higher strain rates. In addition, given the opacity of many epoxy resins, …


Acoustic Emission Characteristics Of Damage Accumulation In Kevlar® 49 Composites, Eduardo Andrade Jan 2015

Acoustic Emission Characteristics Of Damage Accumulation In Kevlar® 49 Composites, Eduardo Andrade

Open Access Theses & Dissertations

Acoustic emission (AE) data attained during tensile testing of epoxy impregnated Kevlar® 49 (K/Ep) composite strands were reduced and analyzed to monitor progressive damage accumulation during the approach to tensile failure. The K/Ep material tested in this study was chosen due to its similarity to the material-of-construction used in composite overwrapped pressure vessels (COPVs) used on the NASA Space Shuttle Orbiter. Insight into the progressive microstructural degradation of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to differentiate between significant AE attributable to microstructural damage …


Investigation Of Ply Waviness In Wind Turbine Blades: Experimental And Numerical Analysis, Sunil Kishore Chakrapani Aug 2014

Investigation Of Ply Waviness In Wind Turbine Blades: Experimental And Numerical Analysis, Sunil Kishore Chakrapani

Sunil Kishore Chakrapani

Composite materials used in fabricating wind turbine blades use large tows, stitched fibers which are relatively thick compared to the composites used in many other applications. Thick fibers enables manufactures to save cost of the fiber and build up the thickness quickly, but introduces defects such as waviness, dry patch etc. Waviness in composites has been shown to degrade the tensile and compressive strength of the laminate. Waviness in a critical portion of the blade can lead to the catastrophic failure of the blade which is costly not only from the cost of the equipment but also the loss of …


An Investigation Into The Properties And Fabrication Methods Of Thermoplastic Composites, Ann E. Livingston-Peters Jun 2014

An Investigation Into The Properties And Fabrication Methods Of Thermoplastic Composites, Ann E. Livingston-Peters

Master's Theses

As applications for thermoplastic composites increase, the understanding of their properties become more important. Fabrication methods for thermoplastic composites continually improve to match designs specifications. These advanced thermoplastics have begun to show an improvement in mechanical properties over those found in thermoset composites commonly used in industry. Polyaryletherketones (PEK) have high service temperatures, good mechanical properties, and improved processing capabilities compared to thermoplastics used in the past making them important to the aerospace industry. The wide range of types of PEK make them suitable for a variety of applications, but selection of specific chemistries, processing parameters, and composite stack-ups determine …


An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand Dec 2013

An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand

Masters Theses

This thesis outlines the development of computational modeling tools used to predict the elastic properties of composite lamina from representative volume elements (RVE) using numerical methods. The homogenization approach involves the use of Gauss’s Theorem to simply the average volumetric strain integral into a surface integral containing which is defined by surface displacements and their direction. Simulations of RVEs under specific loading conditions (longitudinal tension or shear and transverse tension or shear) are then performed in the software package ABAQUS to obtain the surface displacements. It was found that obtaining quality meshes and applying periodic boundary conditions for each RVE …


Validation Of Long-Fiber Thermoplastic Composite Models, Christian A. Vuong, Megan Kinney, Michael Sangid Oct 2013

Validation Of Long-Fiber Thermoplastic Composite Models, Christian A. Vuong, Megan Kinney, Michael Sangid

The Summer Undergraduate Research Fellowship (SURF) Symposium

With increased pressure to reduce energy consumption, long-fiber reinforced thermoplastic composites (LFTs) are of interest to aerospace and automotive industries due to their light weight in combination with other desirable mechanical properties and ease of manufacturing to replace common materials such as aluminum and magnesium. However, the performance of LFTs is highly dependent on microstructural variables such as fiber length and orientation, which are heavily influenced by the manufacturing process. Accurately predicting these factors would allow for more rapid advances in LFTs by reducing the experiments needed for certification and decreasing expenses. While models that serve this purpose exist, the …


The Effect Of A Low-Velocity Impact On The Flexural Strength And Dynamic Response Of Composite Sandwiches With Damage Arrestment Devices, Kodi A. Rider Aug 2012

The Effect Of A Low-Velocity Impact On The Flexural Strength And Dynamic Response Of Composite Sandwiches With Damage Arrestment Devices, Kodi A. Rider

Master's Theses

Impact strength is one of the most important structural properties for a designer to consider, but is often the most difficult to quantify or measure. A constant concern in the field of composites is the effect of foreign object impact damage because it is often undetectable by visual inspection. An impact can create interlaminar damage that often results in severe reductions in strength and instability of the structure. The main objective of this study is to determine the effectiveness of a damage arrestment device (DAD) on the mechanical behavior of composite sandwiches, following a low-velocity impact. A 7.56-lbf crosshead …


Modal Analysis Of Composite Structures With Damping Material, Kellie Michelle Tremaine Jun 2012

Modal Analysis Of Composite Structures With Damping Material, Kellie Michelle Tremaine

Master's Theses

The purpose of this study is to develop an analytical solution for modal analysis of actively damped orthotropic composite plates in bending and to verify it with experimental analysis.

The analytical modal analysis solution for composite plate dynamics is derived using Euler theory. This analysis applies to structures with orthotropic lamina of uniform material properties at any lamination angle. The bending-extensional coupling can be neglected for plates that are symmetric or approximately symmetric, which allows an exact solution for natural frequency and mode shape to be obtained. An exact solution can be found for natural vibration and in general.

The …


Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez Mar 2012

Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez

Aerospace Engineering

Composite materials are engineered by combining two or more constituent materials with significantly different physical or chemical properties in such a way that the constituents are still distinguishable, and not fully blended. Due to today’s high rising prices of gasoline and aviation fuel costs, many manufacturers have turned to the use of lightweight composites in their designs due to the advantages of the composite material, which include outstanding strength, excellent durability, high heat resistance, and significant weight reduction that the composite material properties hold. The purpose of this project is to design and construct a composite structure for an electrically-powered …


The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya Jun 2011

The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya

Aerospace Engineering

Composite materials such as a carbon fiber are used in a variety of new technologies including aircraft, spacecraft, and motor vehicles. Carbon fiber has a high strength to weight ratio, a key advantage over other material options. This report discusses the use of composite damage arrestment devices (DADs) in composite sandwich panels with a foam core. There are three different curing cycles tested for the DADs: pressure only, vacuum only, and vacuum with 1000 lbs of pressure. Using a Tetrahedron Heat Press to cure the composite specimen and an Instron Machine to perform tensile testing, data was collected for each …