Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerospace Engineering

Cooperative Rendezvous In Multi-Vehicle Systems, Rajeev Shobhit Voleti Dec 2024

Cooperative Rendezvous In Multi-Vehicle Systems, Rajeev Shobhit Voleti

Mechanical and Aerospace Engineering Dissertations

The field of cooperative, multi-vehicle systems has witnessed a significant expansion and evolution, yielding considerable opportunities for improved autonomy, resilience, and robustness. Despite these promising developments, complex challenges persist in ensuring secure and efficient rendezvous among cooperative peers. The term "rendezvous," within the realm of cooperative control, refers to the simultaneous convergence of multi-vehicle systems to a designated target location. In missile guidance, the problem of multiple pursuer missiles achieving rendezvous with a target is termed as a salvo attack. Current methodologies often grapple with issues related to synchronization, high latency and network security, all of which can adversely impact …


Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen Aug 2021

Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen

Master's Theses

Low-thrust interplanetary spacecraft trajectory optimization poses a uniquely difficult problem to solve because of the inherent nonlinearities of the dynamics and constraints as well as the large size of the search space of possible solutions. Tools currently exist that optimize low-thrust interplanetary trajectories, but these tools are rarely openly available to the public, and when they are available they require multiple interfaces between multiple different packages. The goal of this work is to present a new piece of low-thrust interplanetary spacecraft trajectory optimization software that is open-source and entirely self-contained so that more people can have access to the ability …


Pseudo-Spectral Methods Based Real-Time Optimal Path Planning For Unmanned Ground Vehicles, Denish Kamleshkumar Baman Dec 2017

Pseudo-Spectral Methods Based Real-Time Optimal Path Planning For Unmanned Ground Vehicles, Denish Kamleshkumar Baman

Mechanical and Aerospace Engineering Theses

Real-time optimal trajectory design and tracking for autonomous ground vehicles are maturing technologies with the potential to advance mobility by enhancing time and energy efficiency in application such as indoor surveillance robots or planetary exploration rovers. Pseudo-spectral methods based trajectory generation framework provides the desired trajectory which minimizes a prescribed objective function (i.e. minimum time, acceleration, and energy) while satisfying kinodynamics and various types of constraints (i.e. obstacle avoidance and smooth turning at waypoint transitions). In this thesis cyber-physical system architecture is used for the communication between rover-vehicle and the ground station. By using optimal state and control vector from …


Numerical Methods For Low-Thrust Trajectory Optimization, Robert E. Pritchett Aug 2016

Numerical Methods For Low-Thrust Trajectory Optimization, Robert E. Pritchett

Open Access Theses

The spacecraft trajectory design process frequently includes the optimization of a quantity of importance such as propellant consumption or time of flight. A variety of methods for trajectory optimization are available, however the efficiency of an approach is dependent on the problem scenario it is applied to. Indirect and direct trajectory optimization methods are examined in this investigation with the goal of assessing the characteristics of each approach, and thereby determining the problem scenarios each is best suited for. Insight is gained from application of each optimization method to three sample problems; a circular-to-circular orbit transfer as well as two …


Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo Dec 2013

Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo

Master's Theses

The renewed academic interest in using solar sails as a source of spacecraft propulsion has been accompanied by a recent fervor of investigations into non-ideal and off-nominal sail performance considerations. One of the most influential considerations, uncertain optical degradation, has been shown to present significant trajectory design difficulties. This paper investigates the potential of using a mid-course degradation model update to mitigate the risk of missing the target destination in a sample 300 day Earth-Venus trajectory. Using a range of potential degradation profiles, it is shown that correcting in the first half of the mission is highly likely to result …