Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

W&B Problems For Far/Cs 25 Airplanes Tutorial, Nihad E. Daidzic Feb 2019

W&B Problems For Far/Cs 25 Airplanes Tutorial, Nihad E. Daidzic

Aviation Department Publications

Weight and Balance (W&B) computations are essential step in ensuring that the aircraft (in this case FAR/CS 25 Transport-category airplanes) is properly loaded with its Center of Mass (CM) of Center of Weight/Gravity (CG) in the proper range.


A Cost Effective Design For A Propeller Thrust/Torque Balance, Nicholas Barrett Sadowski Apr 2018

A Cost Effective Design For A Propeller Thrust/Torque Balance, Nicholas Barrett Sadowski

Mechanical & Aerospace Engineering Theses & Dissertations

Wind tunnel balances are used with aircraft models, propellers, and components to measure applied forces and moments. The design and manufacture of a balance is often for a specific test, test article and conditions. This paper discusses the theory, design, calibration, and testing of a new small propeller balance for use in a low-speed wind tunnel. The new balance is named the ODU15X15.

Theory discussed herein covers how the two measurement components, thrust and torque, affect the balance design. These loads generate strains which are in turn read by strain gages arranged in Wheatstone bridges. The design follows well known …


A Monolithic Internal Strain-Gage Balance Design Based On Design For Manufacturability, Thomas Ladson Webb Iii Jan 2018

A Monolithic Internal Strain-Gage Balance Design Based On Design For Manufacturability, Thomas Ladson Webb Iii

Mechanical & Aerospace Engineering Theses & Dissertations

This paper proposes an alternative approach to internal strain-gage balance design driven by Design for Manufacturability (DFM) principles. The objective of this research was a reduction in fabrication time and, subsequently, cost of a balance by simplifying its design while maintaining basic stiffness and sensitivity. Traditionally, the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) balance designs have relied on Electro-Discharge Machining (EDM), which is a precise but slow and, therefore, expensive process. EDM is chosen due to several factors, including material hardness, surface finish, and complex geometry, including blind cuts. The new balance design objectives require no …