Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Additive manufacturing

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 64

Full-Text Articles in Aerospace Engineering

A Reduced Order Model Of The Celestial Icosahedron As The Substructure For A Lighter Than Air Vehicle, Torin C. Quick Mar 2021

A Reduced Order Model Of The Celestial Icosahedron As The Substructure For A Lighter Than Air Vehicle, Torin C. Quick

Theses and Dissertations

A finite element approach was used to investigate a novel reduced order model to determine the minimum structure dimensionality to support vacuum for a VLTAV. This modeling technique represented the individual segments of the substructure as curved beams with clamped radially-resisted boundary conditions. The full structure was then modeled as a bare structure and structure with skin to validate the results of the reduced order model. The beam geometry for the material Ultem 9085 was determined through this process leading to the 3-D printing of the structure. It was then experimentally tested under uniaxial compression complimented with a FEA model.


Improving Manufacturability And Reducing Cracking In Additively Manufactured Tungsten Alloys, Christopher P. Fassio Mar 2021

Improving Manufacturability And Reducing Cracking In Additively Manufactured Tungsten Alloys, Christopher P. Fassio

Theses and Dissertations

Additively Manufactured tungsten suffers from low () densities due to high concentrations of microcracks as the printed layers cool past tungsten's high ductile to brittle transition temperature. In this study, tungsten-rhenium and tungsten rhenium hafnium carbide compositions were evaluated on density and tensile strength. In addition to varying the compositions of each alloy, printing parameters and post-processing methods were also compared. Print parameters varied for all compositions on an MLab 200R C using included the laser scan strategy, hatch spacing, scan speed, laser power, and print bed material. Post processing techniques of the WRe compositions included hot isostatic pressing and …


The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain Dec 2020

The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain

Mechanical & Aerospace Engineering Theses & Dissertations

Among many thermoplastics that are used in engineering, polyamide 6 (nylon 6) is an extremely versatile engineering thermoplastic. Nylon filled with glass fibers has higher mechanical strength and high wear resistance than general purpose nylon. 3D printed composites, based on fused filament modeling, typically suffer from poor bead-to-bead bonding and relatively high void content, limiting their mechanical properties

This thesis explores the effect of compaction pressure and temperature on improving the mechanical properties of 3D printed composites. Engineering moduli in the printing and transverse to printing direction, as well as ultimate strength were measured using the tensile testing with Digital …


Analysis For Hybrid Rocket Fuel Regression Using Stereolithographic Geometry, Michael P. King Dec 2020

Analysis For Hybrid Rocket Fuel Regression Using Stereolithographic Geometry, Michael P. King

Theses and Dissertations

Hybrid Rocket Engines (HRE) have characteristically low fuel regression that limits their performance. Additive manufacturing and rapid prototyping can possibly solve some of the problems with Hybrid propulsion regression by creating geometry not possible with conventional manufacturing. This work is attempting to make geometric regression simulation of HRE easier by using STereoLithography (STL files) as the geometry. This analysis sets flow conditions, boundary conditions, propellant selection, and allows for fuel geometry to be altered to simulate geometry’s effects on regression rate and propellant performance. This model can be used for more advanced geometric analysis to improve and predict performance.


Investigation Of Ultem 9085 For Use In Printed Orbital Structures, William R. Gallagher Mar 2020

Investigation Of Ultem 9085 For Use In Printed Orbital Structures, William R. Gallagher

Theses and Dissertations

Additive manufacturing is revolutionizing industries ranging from medicine to space. However, the structural characteristics of plastic parts created by these methods are not as well understood as their more established counterparts. This research explored two relevant areas: how the structural characteristics of ULTEM 9085 plastic behaved after exposure to orbital conditions and the design of the cross-sectional area of a beam to be 3-D printed in microgravity based on the expected loads from the printer. To study orbital effects, ULTEM 9085 was printed into 1/4th scale ASTM D638- 14 dogbones using a Stratasys 450mc printer. These dogbones were placed in …


Structural Dynamic And Inherent Damping Characterization Of Additively Manufactured Airfoil Components, Andrew W. Goldin Mar 2020

Structural Dynamic And Inherent Damping Characterization Of Additively Manufactured Airfoil Components, Andrew W. Goldin

Theses and Dissertations

The push for low cost and higher performance/efficient turbine engines have introduced a new demand for novel technologies to improve robustness to vibrations resulting in High Cycle Fatigue (HCF). There have been many proposed solutions to this, some passive and some active. With the advent of Additive Manufacturing (AM), new damping techniques can now be incorporated directly into the design and manufacture process to suppress the vibrations that create HCF. In this study, this novel unfused pocket damping technology is applied to a blade structure and the resulting damping effectiveness is quantified. The application of this technology to complex geometries …


Solution Anneal Heat Treatments To Enhance Mechanical Performance Of Additively Manufactured Inconel 718, David J. Newell Mar 2020

Solution Anneal Heat Treatments To Enhance Mechanical Performance Of Additively Manufactured Inconel 718, David J. Newell

Theses and Dissertations

The nickel-based superalloy Inconel 718 (IN718) is an excellent candidate among aerospace alloys for laser powder-bed fusion (LPBF) manufacturing. As-built LPBF IN718 has a vertically aligned columnar (001) microstructure which translates into orthotropic mechanical behavior. The post-process heat treatments for IN718 were developed 60 years ago for wrought and cast processes and do not mitigate the columnar microstructure of the LPBF process. Recrystallization is required to remove the columnar microstructure, which would allow for parts to be fabricated on different machines or in different orientations but still achieve the same properties. This research investigated the microstructure of LPBF IN718 as …


Analysis Of Additively Manufactured Rings Under Compression Loading For Use In A Vacuum Lighter Than Air Vehicle Structure, Kevin D. Greenoe Mar 2020

Analysis Of Additively Manufactured Rings Under Compression Loading For Use In A Vacuum Lighter Than Air Vehicle Structure, Kevin D. Greenoe

Theses and Dissertations

A Vacuum Lighter Than Air Vehicle (VLTAV) utilizes a lightweight structure paired with an internal vacuum to achieve buoyancy; this allows it to float through-out a given atmosphere. The pressure differential between the internal vacuum andexternal atmosphere places the vehicle under intense loading. A specific structure under investigation is the celestial icosahedron, which features nine intersecting rings that have an outer diameter of 0.2032m and circular cross-sectionalthickness of 5.08mm.The celestials rings are positioned in three different orientations and are analyzed both experimentally and analytically.


Design, Development, And Testing Of A Low Cost, Additively-Manufactured, Centrifugal Compressor, Aaron P. Bauer Mar 2020

Design, Development, And Testing Of A Low Cost, Additively-Manufactured, Centrifugal Compressor, Aaron P. Bauer

Theses and Dissertations

The three objectives of this research were to: 1.) design, build, and test AM compressors to substitute into COTS micro-gas turbine engines, 2.) provide initial correlations between FEA and compressor failure speed, and 3.) characterize the effects of AM on compressor performance. These goals improved the design cycle cost and the design-validation time cycle. ULTEM 9085, 300-AMB, and Onyx-Kevlar temperature-dependent tensile properties were measured. FEA-predicted failure speeds of stock compressor designs led design improvements, potentially fulfilling the original compressor requirements. Physical testing of the stock and ULTEM 9085 compressors occurred. Comparing these compressors' performances demonstrated that low cost, AM materials …


Fabrication And Characterization Of Multifunctional Composites, Aditya R. Thakur Jan 2020

Fabrication And Characterization Of Multifunctional Composites, Aditya R. Thakur

Doctoral Dissertations

“This study details the research to facilitate fabrication and characterization of novel structural composites reinforced with carbon fibers. Across industries, materials with high performance-to-weight ratio are sought after. Using carbon fibers as secondary phases in these proposed composites, specific characteristics can be tailored in these materials to manufacture strong, lightweight, high performance structures. The first part of the research focused on the improvement in the mechanical properties of the composites using carbon fiber reinforcement. As a part of this study, toughened ceramic composites with predictable failure patterns were produced using carbon fiber inclusions. A closed-form analytical model was developed to …


Analysis Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves, Kyle D. Moore, Anthony N. Palazotto Dec 2019

Analysis Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves, Kyle D. Moore, Anthony N. Palazotto

Faculty Publications

Excerpt: The celestial icosahedron geometry is considered as a potential design for a vacuum lighter than air vehicle. The goal of this research is ultimately to determine the feasibility of the design and to understand the initial fluid-structure interaction of the vacuum lighter than air vehicle and the surrounding airflow.


Application Of Metamaterials For Multifunctional Satellite Bus Enabled Via Additive Manufacturing, Michael A. Macchia Mar 2019

Application Of Metamaterials For Multifunctional Satellite Bus Enabled Via Additive Manufacturing, Michael A. Macchia

Theses and Dissertations

Space systems require materials with superior stiffness to weight ratios to provide structural integrity while minimizing mass. Additive manufacturing processes enable the design of metamaterials that exceed the performance of naturally occurring materials in addition to allowing the integration of non-structural functions. This research explored the use of a high stiffness, high density, small melt pool track width AM material, Inconel 718, to enable the production of metamaterials with finer features possible than can possibly be created using a lower density aluminum alloy material. Various metamaterials were designed utilizing thin wall triply periodic minimal surface infilled sandwich structures. The performance …


Additively-Manufactured Hybrid Rocket Consumable Structure For Cubesat Propulsion, Britany L. Chamberlain Dec 2018

Additively-Manufactured Hybrid Rocket Consumable Structure For Cubesat Propulsion, Britany L. Chamberlain

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Three-dimensional, additive printing has emerged as an exciting new technology for the design and manufacture of small spacecraft systems. Using 3-D printed thermoplastic materials, hybrid rocket fuel grains can be printed with nearly any cross-sectional shape, and embedded cavities are easily achieved. Applying this technology to print fuel materials directly into a CubeSat frame results in an efficient, cost-effective alternative to existing CubeSat propulsion systems. Different 3-D printed materials and geometries were evaluated for their performance as propellants and as structural elements. Prototype "thrust columns" with embedded fuel ports were printed from a combination of acrylonitrile utadiene styrene (ABS) and …


Thermal Management Of Satellite Electronics Via Gallium Phase Change Heat Sink Devices, Brian O. Palmer Dec 2018

Thermal Management Of Satellite Electronics Via Gallium Phase Change Heat Sink Devices, Brian O. Palmer

Theses and Dissertations

The purpose of this research was to determine the effectiveness and feasibility of additively manufactured heat sinks using gallium as a phase change material in the thermal management of satellite electronics. A design was created based on the footprint of an Astronautical Development, LLC Lithium 1 UHF radio and six heat sinks were additively manufactured; two each of stainless steel 316, Inconel 718, and ULTEM 9085. Each heat sink was filled with gallium for testing purposes. Models were created to simulate the behavior of the heat transfer and phase change processes occurring within the heat sink. Additionally, laboratory data was …


Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 2, A Quasi-Static Thermo-Mechanical Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Ronald B. Rogge, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle Aug 2018

Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 2, A Quasi-Static Thermo-Mechanical Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Ronald B. Rogge, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The additive manufacturing (AM) process metal powder bed fusion (PBF) can quickly produce complex parts with mechanical properties comparable to that of wrought materials. However, thermal stress accumulated during Metal PBF may induce part distortion and even cause failure of the entire process. This manuscript is the second part of two companion manuscripts that collectively present a part-scale simulation method for fast prediction of thermal distortion in Metal PBF. The first part provides a fast prediction of the temperature history in the part via a thermal circuit network (TCN) model. This second part uses the temperature history from the TCN …


Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 1, A Thermal Circuit Network Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle Aug 2018

Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 1, A Thermal Circuit Network Model, Hao Peng, Morteza Ghasri-Khouzani, Shan Gong, Ross Attardo, Pierre Ostiguy, Bernice Aboud Gatrell, Joseph Budzinski, Charles Tomonto, Joel Neidig, M. Ravi Shankar, Richard Billo, David B. Go, David Hoelzle

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The additive manufacturing (AM) process metal powder bed fusion (PBF) can quickly produce complex parts with mechanical properties comparable to wrought materials. However, thermal stress accumulated during PBF induces part distortion, potentially yielding parts out of specification and frequently process failure. This manuscript is the first of two companion manuscripts that introduce a computationally efficient distortion and stress prediction algorithm that is designed to drastically reduce compute time when integrated in to a process design optimization routine. In this first manuscript, we introduce a thermal circuit network (TCN) model to estimate the part temperature history during PBF, a major computational …


Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli May 2018

Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli

Electronic Theses and Dissertations

Metal Additive Manufacturing (AM) is increasingly being used to make functional components. One of the barriers for AM components to become mainstream is the difficulty to certify them. AM components can have widely different properties based on process parameters. Improving an AM processes requires an understanding of process-structure-property correlations, which can be gathered in-situ and post-process through nondestructive and destructive methods. In this study, two metal AM processes were studied, the first is Ultrasonic Additive Manufacturing (UAM) and the second is Laser Powder Bed Fusion (L-PBF). The typical problems with UAM components are inter-layer and inter-track defects. To improve the …


Additive Manufacturing Of High Solids Loading Hybrid Rocket Fuel Grains, Stephen P. Johnson Apr 2018

Additive Manufacturing Of High Solids Loading Hybrid Rocket Fuel Grains, Stephen P. Johnson

Scholar Week 2016 - present

Hybrid rocket motors offer many of the benefits of both liquid and solid rocket systems. Like liquid engines, hybrid rocket motors are able to be throttled, can be stopped and restarted, and are safer than solid rocket motors since the fuel and oxidizer are in different physical states. Hybrid rocket motors are similar to solid motors in that they are relatively simple and have a high density-specific impulse. One of the major drawbacks of hybrid rocket motors is a slower burning rate than solid rocket motors. Complex port geometries provide greater burning surface area to compensate for lower burning rates …


Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar Apr 2018

Direct Metal Laser-Sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes, M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, …


Case Study: Cooling Channels For Material Testing Applications Using Laser Powder Bed Fusion, Benjamin M. Doane, Ryan P. O'Hara, K. Liu, Carl R. Hartsfield Apr 2018

Case Study: Cooling Channels For Material Testing Applications Using Laser Powder Bed Fusion, Benjamin M. Doane, Ryan P. O'Hara, K. Liu, Carl R. Hartsfield

Faculty Publications

Additive Manufacturing continues to gain a reputation as a key technology that will have a major impact on all aspects of mechanical engineering. The United States Air Force’s (USAF) Air Force Institute of Technology (AFIT), based in Dayton, Ohio, has expanded its AM-focused education and R&D capabilities with the purchase of a Laser Powder Bed Fusion system from Germany’s Concept Laser.


Effects Of Manufacturing Process Variables On Ultrasonic Testing In Electron Beam Melted Ti-6al-4v, Andrew D. Durkee Mar 2018

Effects Of Manufacturing Process Variables On Ultrasonic Testing In Electron Beam Melted Ti-6al-4v, Andrew D. Durkee

Theses and Dissertations

Further research on validating additive manufacturing production quality is required before the realization of direct print-to-fly application of critical components. This research examines the response of ultrasonic testing as a function of various manufacturing variables in electron beam melted samples of Ti-6Al-4V. Four dimensionally identical blocks with 6 spherical voids at varying depths were manufactured using different combinations of stock powder, edge treatments, and void melting. Scans were completed on two sides of each specimen with the transducer focused on the mid-plane. Additionally, one specimen was scanned 6 times, with the focal plane adjusted for each scan to match the …


Design And Testing Of An Additively Manufactured Cubesat Structural Bus, Karson A. Roberts Mar 2018

Design And Testing Of An Additively Manufactured Cubesat Structural Bus, Karson A. Roberts

Theses and Dissertations

Recent innovations in additive manufacturing and design capabilities have opened the door for more opportunities to integrate multiple functions into a structural de- sign. Specifically, 3D printing through advanced laser powder bed fusion of metal powder allows for the development and integration of advanced structures that were previously unachievable. The demonstration of these techniques on a small satellite results in a structural bus consisting of various external and internal features, increasing its functionality and capabilities beyond simply providing structural support. 3D printing a multi-functional CubeSat bus with these integrated features such as internal lattices and wiring tabs demonstrates a new …


Analysis Of Additively Manufactured Injectors For Rotating Detonation Engines, Michael C. Waters Mar 2018

Analysis Of Additively Manufactured Injectors For Rotating Detonation Engines, Michael C. Waters

Theses and Dissertations

This research represents an experimental and computational analysis of additively manufactured injectors for Rotating Detonation Engines (RDEs) for use in rocket propulsion. This research was based on the manufacture and testing of existing injector element designs using additive techniques. The designs were modeled from geometries gathered from Sutton and Biblarz Elements of Rocket Propulsion [23]. The goal of this research was to characterize the viscous losses of each design based on the discharge coefficient. The designs were computationally simulated to gain insight to the flow characteristics using multiple sets of conditions for surface roughness and inlet pressure. The results were …


Experimental Measurement Of Residual Stress And Distortion In Additively Manufactured Stainless Steel Components With Various Dimensions, M. Ghasri-Khouzani, H. Peng, R. Rogge, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar Nov 2017

Experimental Measurement Of Residual Stress And Distortion In Additively Manufactured Stainless Steel Components With Various Dimensions, M. Ghasri-Khouzani, H. Peng, R. Rogge, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M. R. Shankar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Disk-shaped 316L stainless steel parts with various diameters and heights were additively manufactured using a direct metal laser sintering (DMLS) technique. Neutron diffraction was used to profile the residual stresses in the samples before and after removal of the build plate and support structures. Moreover, distortion level of the parts before and after the removal was quantified using a coordinate measuring machine (CMM). Large tensile in-plane stresses (up to ≈ 400 MPa) were measured near the as-built disk top surfaces, where the stress magnitude decreased from the disk center to the edges. The stress gradient was steeper for the disks …


Additive Manufacturing Of High Solids Loading Hybrid Rocket Fuel Grains, Stephen P. Johnson, Michael Baier, Ibrahim E. Gunduz, Steven F. Son Aug 2017

Additive Manufacturing Of High Solids Loading Hybrid Rocket Fuel Grains, Stephen P. Johnson, Michael Baier, Ibrahim E. Gunduz, Steven F. Son

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hybrid rocket motors offer many of the benefits of both liquid and solid rocket systems. Like liquid engines, hybrid rocket motors are able to be throttled, can be stopped and restarted, and are safer than solid rocket motors since the fuel and oxidizer are in different physical states. Hybrid rocket motors are similar to solid motors in that they are relatively simple and have a high density-specific impulse. One of the major drawbacks of hybrid rocket motors is a slower burning rate than solid rocket motors. Complex port geometries provide greater burning surface area to compensate for lower burning rates …


Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box Mar 2017

Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box

Theses and Dissertations

Additive Manufacturing (AM) processes are well known for their ability to fabricate parts with complex geometries. Lattice structures leverage this ability to create parts with high strength-to-weight ratio and other desirable structural qualities. This research presents a parameterized modeling tool using common Finite Element Analysis (FEA) and scripting software with which aggregated lattice structures can be analyzed, given different geometric properties and loading conditions. A full factorial Design of Experiments is run to explore the effects of various parameters on the strength of lattice structures. Experimental compressive strength results from three FDM-produced PLA lattices are discussed and compared to predictions …


Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin Jul 2016

Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin

Mechanical & Aerospace Engineering Theses & Dissertations

Two Compact Jet Engine Simulator (CJES) units were designed for integrated wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. To meet the 5.8% scale of the HWB model, Ultra Compact Combustor technology from the Air Force Research Laboratory was used. The CJES units were built and integrated with a control system in the NASA Langley Low Speed Aero acoustic Wind Tunnel. The combustor liners, plug—vane and flow conditioner components were built in-house at Langley Research Center. The operation of the CJES units was mapped and fixes found for combustor instability tones and rig flow noise. The original …


Surface Roughness Of Electron Beam Melting Ti-6al-4v Effect On Ultrasonic Testing, Evan T. Hanks Mar 2016

Surface Roughness Of Electron Beam Melting Ti-6al-4v Effect On Ultrasonic Testing, Evan T. Hanks

Theses and Dissertations

Experimental research was conducted on the effects of surface roughness on ultrasonic non-destructive testing of Electron Beam Melted (EBM) additively manufactured Ti-6Al-4V. Additive Manufacturing (AM) is a developing technology with many potential benefits, but certain challenges posed by its use require further research before AM parts are viable for widespread use in the aviation industry. Possible applications of this new technology include, Aircraft Battle Damage Repair (ABDR), small batch manufacturing to fill supply gaps, and replacement for obsolete parts. The research presented here assesses the effectiveness of ultrasonic inspection in detecting manufactured flaws in EBM manufactured Ti-6Al-4V. EBM products are …


Effects Of Additive Manufacturing Methods On The Dynamic Properties Of 15-5ph Stainless Steel, Allison A. Dempsey Mar 2016

Effects Of Additive Manufacturing Methods On The Dynamic Properties Of 15-5ph Stainless Steel, Allison A. Dempsey

Theses and Dissertations

Experimental research was conducted to determine the dynamic properties and characterize the microstructure of 15-5PH Stainless Steel manufactured through Direct Metal Laser Sintering (DMLS) additive manufacturing (AM) processes and heat treated using common heat treatment protocols. A thorough understanding of the material's properties is necessary before such parts are utilized in an operational capacity. Of the five builds, two deviated significantly from the specified composition of 15-5PH stainless steel. The remaining three builds, possessing the desired composition and crystalline structure, were tested in compression and tension at two strain rates. Tension tests using a reflected wave and a momentum trap …


Design Optimization Of Sandwich Core, Mohammad Tauhiduzzaman Jan 2016

Design Optimization Of Sandwich Core, Mohammad Tauhiduzzaman

Open Access Theses & Dissertations

Ultralight sandwich structures comprising of low-density core with stiff facings have attracted significant research interest for their considerable weight saving applications. The aircraft industries are focusing on decreasing the structural mass to lower the manufacturing and operating costs. Design analysis of the sandwich cores using finite element analysis has been developed as a promising concept to feature sandwich structures with maximum strength, stiffness, and reduced weight. To obtain multifunctional behavior of sandwich panels, a profound investigation of geometrical and mechanical properties in the transverse plane is required because it is very susceptible to any kind loadings. Structural optimization is one …