Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

CubeSat

Systems Engineering and Multidisciplinary Design Optimization

Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Aerospace Engineering

The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen May 2015

The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen

Jeremy Straub

This paper discusses the use of the system-of-systems (SoS) methodology and SoS engineering (SoSE) to the challenge of the design and operation of a CubeSat-class spacecraft. It considers this in the context of one critical component system, the electrical power system (EPS) which interacts with virtually all other systems onboard the spacecraft. The spacecraft is also considered in the context of being a system-component of a larger mission system-of-systems. The efficacy of SoSE use for this endeavor is considered and recommendations are made for the use of SoS and SoSE by other small spacecraft and, more broadly, spacecraft developers.


Design Of A 1-U Cubesat Structure For The Open Prototype For Educational Nanosats, Benjamin Kading, Jeremy Straub, Ronald Marsh Apr 2015

Design Of A 1-U Cubesat Structure For The Open Prototype For Educational Nanosats, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

CubeSats are a class of small satellites that have recently gained significant interest and are being developed and used for engineering test missions, bona fide research and various other applications. A 1-U CubeSat (the orig-inal form factor) has nominal dimensions of 10 cm x 10 cm x 10 cm and a mass of no more than 1.33 kg [1](however, some integrators are now consistently allow-ing higher mass levels). Due to their small size and the demonstrated ability to successfully use consumer-grade electronics in low-Earth orbit, CubeSats cost sig-nificantly less than larger sized satellites [2]. These re-duced costs, however, are still …


Update On The Development Of A 1-U Cubesat At The University Of North Dakota, Jeremy Straub, Ronald Marsh Mar 2015

Update On The Development Of A 1-U Cubesat At The University Of North Dakota, Jeremy Straub, Ronald Marsh

Jeremy Straub

An overview of the progress on the development of the OpenOrbiter CubeSat is presented. This covers, at a high level, the work that has been performed during the past year and foundational work that occurred prior to this. This poster also discusses future plans for the Open Prototype for Educational NanoSats (OPEN) framework and the OpenOrbiter Small Spacecraft Development Initiative. Particular focus is given to the ongoing work to prepare for an orbital launch, which the program has been down-selected for through the NASA ELaNa CubeSat Launch Initiative program.

In addition to this discussion of the program’s origins, goals and …


Open And Openorbiter: A Needs-Responsive Solution For The Small Satellite Community, Jeremy Straub, Atif Mohammad Apr 2013

Open And Openorbiter: A Needs-Responsive Solution For The Small Satellite Community, Jeremy Straub, Atif Mohammad

Jeremy Straub

The Open Prototype for Educational NanoSats (OPEN) is an initiative launched at the University of North Dakota, as a public service to the nation and the world. The OPEN team is working to create a design, set of implementation instructions and a testing plan for a 1-U CubeSat (which can also serve as a basis for a 2-U or 3-U CubeSat with limited modifications). These will be made publically available to facilitate the low-cost implementation of CubeSat programs at other institutions. The target of the designs is to allow fabrication with a parts budget of approximately $5,000. This is, thus, …


Stemsat: An Iss Cubesat Program Based On Spare Parts, Anders Nervold, Josh Berk, Jeremy Straub Apr 2013

Stemsat: An Iss Cubesat Program Based On Spare Parts, Anders Nervold, Josh Berk, Jeremy Straub

Jeremy Straub

With the national government’s focus on driving STEM-education, it is important to provide hands-on ave-nues where students can engage with, and accumulate ex-perience working directly with projects within their fields of interest. The Student Technology Emersion Satellite (STEMSat), provides an avenue for students to become in-volved in CubeSat design and development with only mi-nor hardware and monetary resources, and without being dependent on a launch.

STEMSats are CubeSat satellites that are created from spare parts, residual tools and equipment, obsolete mate-rials, and other types of trash aboard the ISS. A list of all the excess items available for such a …


The Open Prototype For Educational Nanosats: Fixing The Other Side Of The Small Satellite Cost Equation, Josh Berk, Jeremy Straub, David Whalen Mar 2013

The Open Prototype For Educational Nanosats: Fixing The Other Side Of The Small Satellite Cost Equation, Josh Berk, Jeremy Straub, David Whalen

Jeremy Straub

Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat …


The International Trafficking In Arms Regulations: Precluding Innovation In Academic Spacecraft Engineering — Or Are They?, Jeremy Straub, Joe Vacek Feb 2013

The International Trafficking In Arms Regulations: Precluding Innovation In Academic Spacecraft Engineering — Or Are They?, Jeremy Straub, Joe Vacek

Jeremy Straub

Government regulations and uncertainty about their enforcement can be a significant barrier to innovation. In business, it is undesirable to consume time and other resources developing a product that cannot be sold or which requires navigating significant bureaucracy for each sale. In academ-ia, where limited funding is available prior to the submission of a grant pro-posal and receipt of an award, proposal-stage compliance costs can derail a project long before it begins. This paper reviews the International Traffick-ing in Arms Regulations (ITAR) and their impact on spacecraft research in academia, private research labs and industry. It reviews the exemptions available, …