Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 41

Full-Text Articles in Aerospace Engineering

Innovative Schematic Concept Analysis For A Space Suit Portable Life Support Subsystem, M. Schuller, R. Kobrick, T. Lalk, L. Wiseman, F. Little, Et Al. May 2019

Innovative Schematic Concept Analysis For A Space Suit Portable Life Support Subsystem, M. Schuller, R. Kobrick, T. Lalk, L. Wiseman, F. Little, Et Al.

Ryan L. Kobrick

Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies …


Defining An Abrasion Index For Lunar Surface Systems As A Function Of Dust Interaction Modes And Variable Concentration Zones, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street Jr. May 2019

Defining An Abrasion Index For Lunar Surface Systems As A Function Of Dust Interaction Modes And Variable Concentration Zones, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street Jr.

Ryan L. Kobrick

Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and sub-categorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a …


A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson May 2019

A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson

Richard Stansbury

For safe flight in the National Airspace System (NAS), either under the current interim rules or under anticipated longer-term regulatory guidelines facilitating unmanned aircraft system (UAS) access to the NAS, the UAS must incorporate technologies and flight procedures to ensure that neither people nor property in the air, on the ground, or on or in the water are endangered by the failure of an onboard component, by inappropriate unmanned aircraft (UA) response to pilot commands, or by inadvertent entry by the UA into prohibited airspace. The aircraft must be equipped with emergency recovery (ER) procedures and technologies that ensure that …


Automatic Building Change Detection In Wide Area Surveillance, Paheding Sidike, Almabrok Essa, Fatema Albalooshi, Vijayan K. Asari, Varun Santhaseelan Oct 2016

Automatic Building Change Detection In Wide Area Surveillance, Paheding Sidike, Almabrok Essa, Fatema Albalooshi, Vijayan K. Asari, Varun Santhaseelan

Vijayan K. Asari

We present an automated mechanism that can detect and characterize the building changes by analyzing airborne or satellite imagery. The proposed framework can be categorized into three stages: building detection, boundary extraction and change identification. To detect the buildings, we utilize local phase and local amplitude from monogenic signal to extract building features for addressing issues of varying illumination. Then a support vector machine with Radial basis kernel is used for classification. In the boundary extraction stage, a level-set function with self-organizing map based segmentation method is used to find the building boundary and compute physical area of the building …


Comment On Faa Rule Revision - Transport Category Aircraft, Paul F. Eschenfelder, Valter Battistoni Nov 2015

Comment On Faa Rule Revision - Transport Category Aircraft, Paul F. Eschenfelder, Valter Battistoni

Paul F. Eschenfelder

No abstract provided.


The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen May 2015

The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen

Jeremy Straub

This paper discusses the use of the system-of-systems (SoS) methodology and SoS engineering (SoSE) to the challenge of the design and operation of a CubeSat-class spacecraft. It considers this in the context of one critical component system, the electrical power system (EPS) which interacts with virtually all other systems onboard the spacecraft. The spacecraft is also considered in the context of being a system-component of a larger mission system-of-systems. The efficacy of SoSE use for this endeavor is considered and recommendations are made for the use of SoS and SoSE by other small spacecraft and, more broadly, spacecraft developers.


Design And Analysis Of A Mars Supply Spacecraft, Tristan Plante, Alex Holland, Landon Klein, Jordan Forbord, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Design And Analysis Of A Mars Supply Spacecraft, Tristan Plante, Alex Holland, Landon Klein, Jordan Forbord, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

This poster considers one part of a space solar power-based mission to sup-ply wireless power for use on the Mar-tian surface. It presents a cargo capsule designed to house the necessities for human survival, as well as research equipment , and safely deliver them to a predetermined destination on Mars.


Design Of A 1-U Cubesat Structure For The Open Prototype For Educational Nanosats, Benjamin Kading, Jeremy Straub, Ronald Marsh Apr 2015

Design Of A 1-U Cubesat Structure For The Open Prototype For Educational Nanosats, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

CubeSats are a class of small satellites that have recently gained significant interest and are being developed and used for engineering test missions, bona fide research and various other applications. A 1-U CubeSat (the orig-inal form factor) has nominal dimensions of 10 cm x 10 cm x 10 cm and a mass of no more than 1.33 kg [1](however, some integrators are now consistently allow-ing higher mass levels). Due to their small size and the demonstrated ability to successfully use consumer-grade electronics in low-Earth orbit, CubeSats cost sig-nificantly less than larger sized satellites [2]. These re-duced costs, however, are still …


Update On The Development Of A 1-U Cubesat At The University Of North Dakota, Jeremy Straub, Ronald Marsh Mar 2015

Update On The Development Of A 1-U Cubesat At The University Of North Dakota, Jeremy Straub, Ronald Marsh

Jeremy Straub

An overview of the progress on the development of the OpenOrbiter CubeSat is presented. This covers, at a high level, the work that has been performed during the past year and foundational work that occurred prior to this. This poster also discusses future plans for the Open Prototype for Educational NanoSats (OPEN) framework and the OpenOrbiter Small Spacecraft Development Initiative. Particular focus is given to the ongoing work to prepare for an orbital launch, which the program has been down-selected for through the NASA ELaNa CubeSat Launch Initiative program.

In addition to this discussion of the program’s origins, goals and …


The Development Of A Nanosatellite-Class Sunsat At The University Of North Dakota, Corey Bergsrud, Jeremy Straub, Robert Bernaciak, Subin Shahukhal, Benjamin Kading, Karl Williams, Hossein Salehfar, Johnathan Mcclure, James Casler, David Whalen, Elizabeth Becker, Sima Noghanian Mar 2014

The Development Of A Nanosatellite-Class Sunsat At The University Of North Dakota, Corey Bergsrud, Jeremy Straub, Robert Bernaciak, Subin Shahukhal, Benjamin Kading, Karl Williams, Hossein Salehfar, Johnathan Mcclure, James Casler, David Whalen, Elizabeth Becker, Sima Noghanian

Jeremy Straub

This poster presents the details of work on the SunSat spacecraft design initiative at the University of North Dakota. This project seeks to advance technologies1 and to increase public awareness of Space Solar Power based via visualization, science and engineering work. It will also focus on the development and demonstration of a workable solution and consider the economic benefits2 that the proposed (and alternate) solutions may generate. This poster details the design project which will construct a transmitting Nano Space Solar Power Satellite (NSSPS) and a power reception satellite for a space-to-space Microwave Wireless Power (MWP) demonstration. The SmallSatstyle spacecraft4, …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Sep 2013

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and …


Aerodynamic Simulation Of Vertical-Axis Wind Turbines, A. Korobenko, Ming-Chen Hsu, I. Akkerman, Y. Bazilevs Sep 2013

Aerodynamic Simulation Of Vertical-Axis Wind Turbines, A. Korobenko, Ming-Chen Hsu, I. Akkerman, Y. Bazilevs

Ming-Chen Hsu

Full-scale, 3D, time-dependent aerodynamics modeling and simulation of a Darrieus-type vertical-axis wind turbine (VAWT) is presented. The simulations are performed using a moving-domain finite-element-based ALE-VMS technique augmented with a sliding-interface formulation to handle the rotor-stator interactions present. We simulate a single VAWT using a sequence of meshes with increased resolution to assess the computational requirements for this class of problems. The computational results are in good agreement with experimental data. We also perform a computation of two side-by-side counterrotating VAWTs to illustrate how the ALE-VMS technique may be used for the simulation of multiple turbines placed in arrays.


Space Solar Power As An Enabler For A Human Mission To Mars, Corey Bergsrud, Jeremy Straub Sep 2013

Space Solar Power As An Enabler For A Human Mission To Mars, Corey Bergsrud, Jeremy Straub

Jeremy Straub

Space Solar Power (SSP), a technology based on the collection and aggregated transmission of light from the sun, offers an opportunity to create a deep space electrical infrastructure in order to provide the required level of power to a prospective Mars settlement. Several approaches to this challenge are presented and compared. Under the first approach, several Solar Powered Satellites (SPSs) are positioned in space between the Earth and Mars. These SPSs will capture large amounts of solar energy and transmit this energy in a focused beam via laser or microwave to relay SPSs until the energy finally reaches its Mars …


Space Solar Power Satellite Systems As A Service Provider Of Electrical Power To Lunar Industries, Corey Bergsrud, Jeremy Straub, James Casler, Sima Noghanian Sep 2013

Space Solar Power Satellite Systems As A Service Provider Of Electrical Power To Lunar Industries, Corey Bergsrud, Jeremy Straub, James Casler, Sima Noghanian

Jeremy Straub

Space Solar Power (SSP) systems are poised to deliver significant benefits on Earth and elsewhere. SSP systems are based on the concept of collecting large amounts of solar energy in space and relaying the energy, in the form of microwave or laser radiation, to a receiving array that converts the transmitted energy into usable energy at the destination. An increase in space enterprise dictates the requirement for a continuous supply of energy in order to maintain human-supporting and robotic operation. SSP systems can form a part of the solution to this need. They can be utilized as a service provider …


Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub Jun 2013

Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub

Jeremy Straub

Small spacecraft operating outside of Earth orbit are significantly constrained by the communica- tions link available to them. This is particularly true for stand-alone craft that must rely on their own antenna and transmission systems (for which gain and available power generation are limited by form factor); it is also applicable to ‘hitchhiker’-style missions which may be able to utilize (quite likely very limited amounts of) time on the primary spacecraft’s communications equip- ment for long-haul transmission.

This poster presents the adaptation of the Model-Based Transmission Reduction (MBTR) frame- work’s Model-Based Data Analysis (MBDA) component for use on an interplanetary …


Open Beyond Orbit: Using The Designs From The Open Prototype For Educational Nanosats Outside Of Earth Orbit, Jeremy Straub Jun 2013

Open Beyond Orbit: Using The Designs From The Open Prototype For Educational Nanosats Outside Of Earth Orbit, Jeremy Straub

Jeremy Straub

This paper presents an overview of the Open Prototype for Educational NanoSats (OPEN) and its prospective use in interplanetary missions. OPEN is framework to facilitate the low-cost creation of CubeSat-class spacecraft via using publically available (provided by the OPEN project) de- signs, software, fabrication instructions and test plans. The base open configuration is designed to be able to be produced with a parts budget of under $5,000. Despite this low cost, it is a very ro- bust spacecraft (with capabilities meeting or exceeding many of the vendor-kit solutions which cost eight-or-more times this amount).

Two approaches for using the OPEN …


Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche May 2013

Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche

Ole J Mengshoel

Software Health Management (SWHM) is an emerging field which addresses the critical need to detect, diagnose, predict, and mitigate adverse events due to software faults and failures. These faults could arise for numerous reasons including coding errors, unanticipated faults or failures in hardware, or problematic interactions with the external environment. This paper demonstrates a novel approach to software health management based on a rigorous Bayesian formulation that monitors the behavior of software and operating system, performs probabilistic diagnosis, and provides information about the most likely root causes of a failure or software problem. Translation of the Bayesian network model into …


Open And Openorbiter: A Needs-Responsive Solution For The Small Satellite Community, Jeremy Straub, Atif Mohammad Apr 2013

Open And Openorbiter: A Needs-Responsive Solution For The Small Satellite Community, Jeremy Straub, Atif Mohammad

Jeremy Straub

The Open Prototype for Educational NanoSats (OPEN) is an initiative launched at the University of North Dakota, as a public service to the nation and the world. The OPEN team is working to create a design, set of implementation instructions and a testing plan for a 1-U CubeSat (which can also serve as a basis for a 2-U or 3-U CubeSat with limited modifications). These will be made publically available to facilitate the low-cost implementation of CubeSat programs at other institutions. The target of the designs is to allow fabrication with a parts budget of approximately $5,000. This is, thus, …


Stemsat: An Iss Cubesat Program Based On Spare Parts, Anders Nervold, Josh Berk, Jeremy Straub Apr 2013

Stemsat: An Iss Cubesat Program Based On Spare Parts, Anders Nervold, Josh Berk, Jeremy Straub

Jeremy Straub

With the national government’s focus on driving STEM-education, it is important to provide hands-on ave-nues where students can engage with, and accumulate ex-perience working directly with projects within their fields of interest. The Student Technology Emersion Satellite (STEMSat), provides an avenue for students to become in-volved in CubeSat design and development with only mi-nor hardware and monetary resources, and without being dependent on a launch.

STEMSats are CubeSat satellites that are created from spare parts, residual tools and equipment, obsolete mate-rials, and other types of trash aboard the ISS. A list of all the excess items available for such a …


Finite Element Simulation Of Wind Turbine Aerodynamics: Validation Study Using Nrel Phase Vi Experiment, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Mar 2013

Finite Element Simulation Of Wind Turbine Aerodynamics: Validation Study Using Nrel Phase Vi Experiment, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

A validation study using the National Renewable Energy Laboratory (NREL) Phase VI wind turbine is presented. The aerodynamics simulations are performed using the finite element arbitrary Lagrangian–Eulerian–variational multiscale formulation augmented with weakly enforced essential boundary conditions. In all cases, the rotor is assumed to be rigid and its rotation is prescribed. The rotor-only simulations are performed for a wide range of wind conditions, and the computational results compare favorably with the experimental findings in all cases. The sliding-interface method is adopted for the simulation of the full wind turbine configuration. The full-wind-turbine simulations capture the blade–tower interaction effect, and the …


Exposing Multiple User-Specific Data Denominated Products From A Single Small Satellite Data Stream, Atif F. Mohammad,, Emanuel Grant, Jeremy Straub, Ronald Marsh, Scott Kerlin Mar 2013

Exposing Multiple User-Specific Data Denominated Products From A Single Small Satellite Data Stream, Atif F. Mohammad,, Emanuel Grant, Jeremy Straub, Ronald Marsh, Scott Kerlin

Jeremy Straub

This paper presents a research work on small satellite data stream and related distribution to associated stakeholders, which is a field that needs to get explored in more detail. The algorithm that is presented to extract USDDP (User-Specific Data Denominated Products) is a self managing body, which will be within as Open Space Box environment or OSBE as a novel idea. It contains an individual stream transmitted by the small satellite, which later is to be converted into USDDP. The context defined here deals with area in detail. Contexts are vitally important because they control, influence and affect everything within …


The Open Prototype For Educational Nanosats: Fixing The Other Side Of The Small Satellite Cost Equation, Josh Berk, Jeremy Straub, David Whalen Mar 2013

The Open Prototype For Educational Nanosats: Fixing The Other Side Of The Small Satellite Cost Equation, Josh Berk, Jeremy Straub, David Whalen

Jeremy Straub

Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat …


The International Trafficking In Arms Regulations: Precluding Innovation In Academic Spacecraft Engineering — Or Are They?, Jeremy Straub, Joe Vacek Feb 2013

The International Trafficking In Arms Regulations: Precluding Innovation In Academic Spacecraft Engineering — Or Are They?, Jeremy Straub, Joe Vacek

Jeremy Straub

Government regulations and uncertainty about their enforcement can be a significant barrier to innovation. In business, it is undesirable to consume time and other resources developing a product that cannot be sold or which requires navigating significant bureaucracy for each sale. In academ-ia, where limited funding is available prior to the submission of a grant pro-posal and receipt of an award, proposal-stage compliance costs can derail a project long before it begins. This paper reviews the International Traffick-ing in Arms Regulations (ITAR) and their impact on spacecraft research in academia, private research labs and industry. It reviews the exemptions available, …


Risk Analysis & Management In Student-Centered Spacecraft Development Projects, Jeremy Straub, Ronald Fevig, James Casler, Om Yadav Jan 2013

Risk Analysis & Management In Student-Centered Spacecraft Development Projects, Jeremy Straub, Ronald Fevig, James Casler, Om Yadav

Jeremy Straub

Student involvement in any engineering project introduces an element of risk. This risk is particularly pronounced with small spacecraft projects, as a failure of the spacecraft on-orbit can result in a complete failure of the mission. However, student involvement in these projects is critical to allow research aims to be accomplished, in a university setting, and to train the next generation of spacecraft engineering professionals. The nature of risks posed by student involvement is discussed and a framework for assessing and mitigating these risks presented.


Isogeometric Fluid–Structure Interaction Analysis With Emphasis On Non-Matching Discretizations, And With Application To Wind Turbines, Y. Bazilevs, Ming-Chen Hsu, M. A. Scott Dec 2012

Isogeometric Fluid–Structure Interaction Analysis With Emphasis On Non-Matching Discretizations, And With Application To Wind Turbines, Y. Bazilevs, Ming-Chen Hsu, M. A. Scott

Ming-Chen Hsu

In this paper we develop a framework for fluid–structure interaction (FSI) modeling and simulation with emphasis on isogeometric analysis (IGA) and non-matching fluid–structure interface discretizations. We take the augmented Lagrangian approach to FSI as a point of departure. Here the Lagrange multiplier field is defined on the fluid–structure interface and is responsible for coupling of the two subsystems. Thus the FSI formulation does not rely on the continuity of the underlying function spaces across the fluid–structure interface in order to produce the correct coupling conditions between the fluid and structural subdomains. However, in deriving the final FSI formulation the interface …


Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza Nov 2012

Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza

Celestin Nkundineza

Stochastic control is an important area of research in engineering systems that undergo disturbances. Controlling individual states in such systems is critical. The present investigation is concerned with the application of the stochastic optimal control strategy developed by To (2010) and its implementation as well as providing computed results of linear and nonlinear systems under stationary and nonstationary random excitations. In the strategy the feedback matrix is designed based on the achievement of the objectives for individual states in the system through the application of the Lyapunov equation for the system. Each diagonal element in the gain or associated gain …


Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2012

Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a validation study involving the full-scale NREL Phase VI two-bladed wind turbine rotor. The ALE–VMS formulation of aerodynamics, based on the Navier–Stokes equations of incompressible flows, is employed in conjunction with weakly enforced essential boundary conditions. We find that the ALE–VMS formulation using linear tetrahedral finite elements is able to reproduce experimental data for the aerodynamic (low-speed shaft) torque and cross-section pressure distribution of the NREL Phase VI rotor. We also find that weak enforcement of essential boundary conditions is critical for obtaining accurate aerodynamics results on relatively coarse boundary layer meshes. The proposed numerical …


Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar Jul 2012

Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar

Ming-Chen Hsu

We provide an overview of the Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) and Space–Time Variational Multiscale (ST-VMS) methods we have developed for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction (FSI). The related techniques described include weak enforcement of the essential boundary conditions, Kirchhoff–Love shell modeling of the rotor-blade structure, NURBS-based isogeometric analysis, and full FSI coupling. We present results from application of these methods to computer modeling of NREL 5MW and NREL Phase VI wind-turbine rotors at full scale, including comparison with experimental data.


State Of The Art / Novel Rotary-Turbo-Inflow Tech / Featured Development - Gearturbine Project - Atypical Motor Engine Type, Carlos Barrera Jan 2012

State Of The Art / Novel Rotary-Turbo-Inflow Tech / Featured Development - Gearturbine Project - Atypical Motor Engine Type, Carlos Barrera

Carlos Barrera

GEARTURBINE PROJECT Atypical InFlow Thermodynamic Technology Proposal Submission Novel Fueled Motor Engine Type

*State of the art Innovative concept Top system Higher efficient percent. Have similar system of the Aeolipile Heron Steam device from Alexandria 10-70 AD. -New Form-Function Motor-Engine Device. Next Step, Epic Design Change, Broken-Seal Revelation. -Desirable Power-Plant Innovation.

YouTube; * Atypical New • GEARTURBINE / Retrodynamic = DextroRPM VS LevoInFlow + Ying Yang Thrust Way Type - Non Waste Looses

-This innovative concept consists of hull and core where are held all 8 bteps of the work-flow which make the concept functional. The core has several gears …


Ground Support Station Team, Cassandra Johnson, Iva Gerasimenko, Aaron Podoll, Josh Berk, Jeremy Straub Jan 2012

Ground Support Station Team, Cassandra Johnson, Iva Gerasimenko, Aaron Podoll, Josh Berk, Jeremy Straub

Jeremy Straub

No abstract provided.