Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Aerospace Engineering

Effects Of Simultaneous Co2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-Flow Diffusion Ethylene Flame, Yu Yang, Shu Zheng, Yuzhen He, Hao Liu, Ran Sui, Qiang Lu Dec 2023

Effects Of Simultaneous Co2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-Flow Diffusion Ethylene Flame, Yu Yang, Shu Zheng, Yuzhen He, Hao Liu, Ran Sui, Qiang Lu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Soot formation in a co-flow diffusion ethylene flame with the addition of CO2 to the fuel (the CO2-F), oxidizer (the CO2-O), and fuel/oxidizer (the CO2-F/O) streams was numerically and experimentally investigated in this study. The effects of different CO2 addition ways on soot inception, soot condensation, H-abstraction-C2H2-addition (HACA) and oxidation by O2/OH processes, were quantitatively analyzed by introducing the integrated reaction rates over the whole computational domain. The simulated and experimental results showed that the CO2-F/O was the most effective in inhibiting soot formation …


The Role Of Atomic Layer Deposited Coatings On Lithium-Ion Transport: A Comprehensive Study, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park Dec 2023

The Role Of Atomic Layer Deposited Coatings On Lithium-Ion Transport: A Comprehensive Study, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Use of Ultrathin Film Coatings Prepared through Atomic Layer Deposition (ALD) Has Become Widespread for Improving Lithium-Ion Diffusivity of Active Particles, Which Plays a Crucial Role in Determining the Rate Capability of Lithium-Ion Batteries (LIBs). in This Study, the Impact of ALD Coating Thickness on Ionic Diffusivity in CeO2-Coated LiMn2O4 (LMO) Cathode Particles is Comprehensively Investigated through First-Principles Calculations by Focusing on the Trade-Offs between the Physical Properties of the Film and its Impact on the Diffusivity of Ions. Our Findings Indicate that Several Physical Factors Affect the Diffusivity of the Coating, Including the Crystal-Amorphous Structure that Depends on …


Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou Nov 2023

Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing (AM) simulations are effective for materials that are well characterized and published; however, for newer or proprietary materials, they cannot provide accurate results due to the lack of knowledge of the material properties. This work demonstrates the process of the application of mathematical search algorithms to develop an optimized material dataset which results in accurate simulations for the laser directed energy deposition (DED) process. This was performed by first using a well-characterized material, Ti-64, to show the error in the predicted melt pool was accurate, and the error was found to be less than two resolution steps. Then, …


The Investigation Of A Likely Scenario For Natural Tornado Genesis And Evolution From An Initial Instability Profile, Alexios Nicolas Philippou, Kakkattukuzhy M. Isaac Oct 2023

The Investigation Of A Likely Scenario For Natural Tornado Genesis And Evolution From An Initial Instability Profile, Alexios Nicolas Philippou, Kakkattukuzhy M. Isaac

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A likely mechanism for the little-understood tornado genesis is proposed and its numerical implementation is presented. The Burgers-Rott vortex with its axis in the vertical direction is introduced as an instability mechanism, and the flow field then evolves under the influence of the atmospheric pressure, temperature and density variations with altitude. Buoyancy effects are implemented using the Boussinesq model. Results are presented and discussed for a set of conditions including mesh type and size, different turbulence models, and a few different boundary conditions. Post-processed results of the transient simulations including animations contain a wealth of information to help analyze tornado …


Stochastic Modeling Of Physical Drag Coefficient – Its Impact On Orbit Prediction And Space Traffic Management, Smriti Nandan Paul, Phillip Logan Sheridan, Richard J. Licata, Piyush M. Mehta Aug 2023

Stochastic Modeling Of Physical Drag Coefficient – Its Impact On Orbit Prediction And Space Traffic Management, Smriti Nandan Paul, Phillip Logan Sheridan, Richard J. Licata, Piyush M. Mehta

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ambitious satellite constellation projects by commercial entities and the ease of access to space in recent times have led to a dramatic proliferation of low-Earth space traffic. It jeopardizes space safety and long-term sustainability, necessitating better space domain awareness (SDA). Correct modeling of uncertainties in force models and orbital states, among other things, is an essential part of SDA. For objects in the low-Earth orbit (LEO) region, the uncertainty in the orbital dynamics mainly emanate from limited knowledge of the atmospheric drag-related parameters and variables. In this paper, which extends the work by Paul et al. (2021), we develop a …


In-Situ Lock-In Thermographic Measurement Of Powder Layer Thermal Diffusivity And Thickness In Laser Powder Bed Fusion, Tao Liu, Edward C. Kinzel, Ming-Chuan Leu Jul 2023

In-Situ Lock-In Thermographic Measurement Of Powder Layer Thermal Diffusivity And Thickness In Laser Powder Bed Fusion, Tao Liu, Edward C. Kinzel, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The thermal transport properties of the powder layer play a crucial role in the process of laser powder bed fusion (LPBF). This paper introduces an in-situ measurement method utilizing active lock-in infrared thermography (LIT) to determine the thermal diffusivity and thickness of the powder layer. The proposed method exhibits great potential for accurate powder property and thickness measurements and real-time process monitoring. In this lock-in thermographic technique, the LPBF laser beam is directed through an optical diffuser and modulated into a square thermal wave. This thermal wave serves as an active heat source to heat the surface of the powder …


High-Temperature Phonon-Assisted Upconversion Photoluminescence Of Monolayer Wse2, Fengkai Meng, Xiaodong Yang, Jie Gao Jul 2023

High-Temperature Phonon-Assisted Upconversion Photoluminescence Of Monolayer Wse2, Fengkai Meng, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Phonon-assisted up conversion photoluminescence (UPL) is an anti-Stokes process emitting photons of energy higher than the excitation photons, with up conversion energy gain provided by optical phonons. Atomically thin transition metal dichalcogenides provide a promising platform for exploring the phonon-assisted UPL process due to their strong phonon-exciton interactions. Here, high-temperature phonon-assisted UPL process in monolayer WSe2 is investigated, aiming to understand the role of phonon population and the number of phonons involved in the UPL process at elevated temperatures. It is demonstrated that the integrated intensity of UPL emission significantly increases by two orders of magnitude as the temperature rises …


Decomposition Of The Wall-Heat Flux Of Compressible Boundary Layers, Dongdong Xu, Pierre Ricco, Lian Duan Jun 2023

Decomposition Of The Wall-Heat Flux Of Compressible Boundary Layers, Dongdong Xu, Pierre Ricco, Lian Duan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We use the method developed by Elnahhas and Johnson ["On the enhancement of boundary layer skin friction by turbulence: An angular momentum approach," J. Fluid Mech. 940, A36 (2022)] and Xu et al. ["Decomposition of the skin-friction coefficient of compressible boundary layers," Phys. Fluids 35, 035107 (2023)] for the decomposition of the skin-friction coefficient to integrate the mean temperature equation for high-Reynolds-number compressible boundary layers and arrive at an identity for the decomposition of the wall-heat flux. The physical interpretation of the identity and the limitations of this approach are discussed. We perform an integration on the mean temperature equation …


Multifunctional Additive Manufacturing And Multiphysics Numerical Investigations Of Carbon Fiber Structural Battery Composite Using A Drop-On-Demand Method With In-Situ Consolidation, Xiangyang Dong, Yuekun Chen May 2023

Multifunctional Additive Manufacturing And Multiphysics Numerical Investigations Of Carbon Fiber Structural Battery Composite Using A Drop-On-Demand Method With In-Situ Consolidation, Xiangyang Dong, Yuekun Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lightweight Carbon Fiber Structural Battery Composite Has Great Potential in Increasing Structural Energy Storage Efficiency for Multifunctional Applications. However, It is Still Challenging to Design Carbon Fiber Multifunctional Composite Due to Lack of Proper Manufacturing Methods. in This Study, an Integrated Multifunctional Design and Fabrication Approach is Developed by Combining a Drop-On-Demand Additive Manufacturing Method with a Multiphysics Numerical Model to Guide the Development of the New Multifunctional Composite. through Deposition with In-Situ Consolidation, the Function and Thickness of Each Carbon Fiber Layer as Well as its Fiber Volume Fraction Are Accurately Controlled. Decreasing Layer Thickness Improves Flexural Properties. the …


Experimental And Numerical Studies Of Slurry-Based Coextrusion Deposition Of Continuous Carbon Fiber Micro-Batteries To Additively Manufacture 3d Structural Battery Composites, Aditya R. Thakur, Xiangyang Dong Apr 2023

Experimental And Numerical Studies Of Slurry-Based Coextrusion Deposition Of Continuous Carbon Fiber Micro-Batteries To Additively Manufacture 3d Structural Battery Composites, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Carbon Fiber Structural Battery Composites Have Recently Attracted Growing Interests Due to their Potentials of Simultaneously Carrying Mechanical Loads and Storing Electrical Energy for Lightweight Application. in This Study, We Present a Slurry-Based Coextrusion Deposition Method to Additively Manufacture 3D Structural Battery Composites from Carbon Fiber Micro-Batteries. Cathode Slurry is Coextruded Together with Solid Polymer Electrolyte-Coated Carbon Fibers in a Single Deposition. a Network of Carbon Fiber Micro-Batteries is Achieved within the Fabricated Structural Battery Composites. Electrochemical Tests Show a Stable Charge-Discharge Performance Up to 100 Cycles. the Rheological Behavior of the Cathode Slurry is Found to Govern the Coextrusion …


Sharprazor: Automatic Removal Of Hair And Ruler Marks From Dermoscopy Images, Reda Kasmi, Jason Hagerty, Reagan Harris Young, Norsang Lama, Januka Nepal, Jessica Miinch, William V. Stoecker, R. Joe Stanley Apr 2023

Sharprazor: Automatic Removal Of Hair And Ruler Marks From Dermoscopy Images, Reda Kasmi, Jason Hagerty, Reagan Harris Young, Norsang Lama, Januka Nepal, Jessica Miinch, William V. Stoecker, R. Joe Stanley

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Background: The removal of hair and ruler marks is critical in handcrafted image analysis of dermoscopic skin lesions. No other dermoscopic artifacts cause more problems in segmentation and structure detection. Purpose: The aim of the work is to detect both white and black hair, artifacts and finally inpaint correctly the image. Method: We introduce a new algorithm: SharpRazor, to detect hair and ruler marks and remove them from the image. Our multiple-filter approach detects hairs of varying widths within varying backgrounds, while avoiding detection of vessels and bubbles. The proposed algorithm utilizes grayscale plane modification, hair enhancement, segmentation using tri-directional …


Advanced Ensemble Modeling Method For Space Object State Prediction Accounting For Uncertainty In Atmospheric Density, Smriti Nandan Paul, Richard J. Licata, Piyush M. Mehta Mar 2023

Advanced Ensemble Modeling Method For Space Object State Prediction Accounting For Uncertainty In Atmospheric Density, Smriti Nandan Paul, Richard J. Licata, Piyush M. Mehta

Mechanical and Aerospace Engineering Faculty Research & Creative Works

For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction error, which is critical for space traffic management activities such as the satellite conjunction analysis. This paper investigates the evolution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilistic machine learning techniques. The recently proposed "HASDM-ML," "CHAMP-ML," and "MSIS-UQ" machine learning models for density estimation (Licata and Mehta, 2022b; Licata et al., 2022b) are used in this work. The investigation is convoluted because of the spatial and temporal correlation of the atmospheric density …


Decomposition Of The Skin-Friction Coefficient Of Compressible Boundary Layers, Dongdong Xu, Pierre Ricco, Lian Duan Mar 2023

Decomposition Of The Skin-Friction Coefficient Of Compressible Boundary Layers, Dongdong Xu, Pierre Ricco, Lian Duan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We derive an integral formula for the skin-friction coefficient of compressible boundary layers by extending the formula of Elnahhas and Johnson ["On the enhancement of boundary layer skin friction by turbulence: An angular momentum approach, "J. Fluid Mech. 940, A36 (2022)] for incompressible boundary layers. The skin-friction coefficient is decomposed into the sum of the contributions of the laminar coefficient, the change of the dynamic viscosity with the temperature, the Favre-Reynolds stresses, and the mean flow. This decomposition is applied to numerical data for laminar and turbulent boundary layers, and the role of each term on the wall-shear stress is …


Simulation Of Natural Tornado Genesis And Evolution From An Initial Instability Profile, Kakkattukuzhy M. Issac Feb 2023

Simulation Of Natural Tornado Genesis And Evolution From An Initial Instability Profile, Kakkattukuzhy M. Issac

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A likely mechanism for the little-understood tornado genesis is proposed and its numerical implementation is presented. The Burgers-Rott vortex with its axis in the vertical direction is introduced as an instability mechanism, and the flow field then evolves under the influence of the atmospheric pressure, temperature and density variations with altitude. Buoyancy effects are implemented using the Boussinesq model. Results are presented and discussed for a set of conditions including mesh type and size, different turbulence models, and a few different boundary conditions. Post-processed results of the transient simulations including animations contain a wealth of information to help analyze tornado …


Selection Of Solidification Pathway In Rapid Solidification Processes, Nima Najafizadeh, Men G. Chu, Yijia Gu Feb 2023

Selection Of Solidification Pathway In Rapid Solidification Processes, Nima Najafizadeh, Men G. Chu, Yijia Gu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Rapid Solidification Processing of Alloys Enables the Formation of Exotic Nonequilibrium Microstructures. However, the Interrelationship between the Processing Parameters and the Resulting Microstructure is Yet to Be Fully Understood. in Melt Spinning (MS) and Additive Manufacturing (AM) of Rapidly Solidified Alloys, Opposite Microstructure Development Sequences Were Observed. a Fine-To-Coarse Microstructural Transition is Typically Observed in Melt-Spun Ribbons, Whereas Melt Pools in AM Exhibit a Coarse-To-Fine Transition. in This Paper, the Microstructural Evolutions during These Two Processes Are Investigated using Phase-Field Modeling. the Variation of All Key Variables of the Solid-Liquid Interface (Temperature, Composition, and Velocity) throughout the Entire Rapid Solidification …


Glass-Based Biodegradable Pressure Sensor Toward Biomechanical Monitoring With A Controllable Lifetime, Devdatt Chattopadhyay, Jonghyun Park, Chang-Soo Kim Feb 2023

Glass-Based Biodegradable Pressure Sensor Toward Biomechanical Monitoring With A Controllable Lifetime, Devdatt Chattopadhyay, Jonghyun Park, Chang-Soo Kim

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A New Class of Potentially Implantable Solid-State Sensors is Demonstrated Utilizing Biodegradable Glass as the Main Structural Material. the Device Behavior is Manipulated Via Chemical Decomposition, and Then Physically Disintegrated in a Controlled Manner. It is based on the Capacitive Sensing Mechanism, Comprising an Elastic Insulator between Two Borate-Rich Glass Substrates. This Mesoscale Pressure Sensor is Characterized by a Range of Pressure of Up to 14 MPa in a Phosphate Buffer Solution Environment. the Sensor Exhibits Good Sensitivity and Reversibility Responding to Compressive Pressures and Remains Fully Functional Before a Desired, Sudden Failure Caused by Dissolution. the Operational Lifetime Can …


Experimental Approach For Development Of A Powder Spreading Metric In Additive Manufacturing, M. Hossein Sehhat, Austin T. Sutton, Zane Yates, Ming-Chuan Leu Jan 2023

Experimental Approach For Development Of A Powder Spreading Metric In Additive Manufacturing, M. Hossein Sehhat, Austin T. Sutton, Zane Yates, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Powder Spreading is a Vital Step of Powder-Based Additive Manufacturing (AM) Processes. the Quality of Spread Powder Can Considerably Influence the Properties of Fabricated Parts. Poorly Packed Powder Beds with High Surface Roughness Result in Printed Part Layers with Large Porosity and Low Dimensional Accuracy, Leading to Poor Mechanical Properties. Therefore, the Powder Spread ability and its Dependence on Process Parameters and Powder Characteristics Should Be Quantified to Improve the Efficiency of Powder-Based AM Methods. This Study Proposes a Novel Dimensionless Powder Spread Ability Metric that Can Be Commonly Used in Different Powder-Based AM Processes. the Quality of Spread …


Experimental Study For Improving The Productivity Of Laser Foil Printing, Tunay Turk, Ming-Chuan Leu Jan 2023

Experimental Study For Improving The Productivity Of Laser Foil Printing, Tunay Turk, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This Study Aims to Improve the Productivity of Laser Foil Printing (LFP), Which is a Foil-Based Metal Additive Manufacturing (AM) Process. LFP Uses a Dual-Laser System to Fabricate a 3-Dimensional Part in a Layered Fashion by Performing Four Steps in Each Layer: Spot Welding, Pattern Welding, Contour Cutting, and Edge Polishing, All of Which Performed by Use of Lasers. We Experimentally Examined the Welding and Polishing Steps in This Study to Enhance LFP Productivity. the Jump Speed, Dwelling Duration, and Weld Path of Spot Welding and the Line Welding Speed and Wait Time between Weld Lines of Pattern Welding Are …


Comparison Of The Thermal Stability In Equal-Channel-Angular-Pressed And High-Pressure-Torsion-Processed Fe–21cr–5al Alloy, Maalavan Arivu, Andrew Hoffman, Jiaqi Duan, Jonathan Poplawsky, Xinchang Zhang, Frank W. Liou, Rinat Islamgaliev, Ruslan Valiev, Haiming Wen Jan 2023

Comparison Of The Thermal Stability In Equal-Channel-Angular-Pressed And High-Pressure-Torsion-Processed Fe–21cr–5al Alloy, Maalavan Arivu, Andrew Hoffman, Jiaqi Duan, Jonathan Poplawsky, Xinchang Zhang, Frank W. Liou, Rinat Islamgaliev, Ruslan Valiev, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Nanostructured Steels Are Expected to Have Enhanced Irradiation Tolerance and Improved Strength. However, They Suffer from Poor Microstructural Stability at Elevated Temperatures. in This Study, Fe–21Cr–5Al–0.026C (Wt%) Kanthal D (KD) Alloy Belonging to a Class of (FeCrAl) Alloys Considered for Accident-Tolerant Fuel Cladding in Light-Water Reactors is Nanostructured using Two Severe Plastic Deformation Techniques of Equal-Channel Angular Pressing (ECAP) and High-Pressure Torsion (HPT), and their Thermal Stability between 500–700 °C is Studied and Compared. ECAP KD is Found to Be Thermally Stable Up to 500 °C, Whereas HPT KD is Unstable at 500 °C. Microstructural Characterization Reveals that ECAP KD …


Microstructure, Mechanical Properties And Oxidation Behavior Of Refractory Multi-Principal Element Alloys By Laser Remelting And Conventional Manufacturing, Visharad Jalan, Seth Crawford, Sung Heng Wu, Frank W. Liou, Haiming Wen Jan 2023

Microstructure, Mechanical Properties And Oxidation Behavior Of Refractory Multi-Principal Element Alloys By Laser Remelting And Conventional Manufacturing, Visharad Jalan, Seth Crawford, Sung Heng Wu, Frank W. Liou, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Refractory Multi-Principal Element Alloys (RMPEAs), HfNbTaTiZr, (HfNbTaTiZr)9Cr, and (HfNbTaTiZr)9Al, Were Manufactured using Vacuum Arc Melting Followed by Laser Remelting to Mimic Additive Manufacturing. the Microhardness of the As-Cast HfNbTaTiZr, (HfNbTaTiZr)9Cr, and (HfNbTaTiZr)9Al Samples after Arc Melting Was Measured as 6.20, 7.63, and 6.89 Gpa, respectively. after Laser Remelting and Re-Solidification, the Hardness Increased by ~ 30% for Each Composition; the Hardest Was (HfNbTaTiZr)9Cr Measured at 9.60 GPa, While the Softest Was HfNbTaTiZr with a Hardness of 8.42 GPa, Which Was Still Harder Compared to All the Other Samples. the Addition …


Application Of A Variable Path Length Repetitive Process Control For Direct Energy Deposition Of Thin-Walled Structures, Elias B. Snider, Douglas A. Bristow Jan 2023

Application Of A Variable Path Length Repetitive Process Control For Direct Energy Deposition Of Thin-Walled Structures, Elias B. Snider, Douglas A. Bristow

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct Energy Deposition (DED) Additive Manufacturing is Well Suited to Fabricating Large Thin-Walled Metal Structures Such as Rocket Nozzles but Suffers from Layer-To-Layer Defect Propagation. Propagating Defects May Exhibit as Slumping or a Ripple in Bead Geometry. Recent Works Have Used Repetitive Process Control (RPC) Methods for Additive Manufacturing to Stabilize the Layer-Wise Defect Propagation, But These Methods Require Repetition of the Same Path. However, Typical Thin-Wall DED Applications, Sometimes Referred to as Vase Structures, Have Changing Paths with Each Layer Such as Expanding or Contracting Diameters and Changing Profiles. This Paper Presents an Extension to Optimal RPC that Uses …


Microstructure And Residual Stress In Functionally Graded 316l Stainless Steel/Inconel 625 Alloys Fabricated By Direct Energy Deposition, Xinchang Zhang, Liang Wang, Frank W. Liou, Yang Ren, Cheng Sun Jan 2023

Microstructure And Residual Stress In Functionally Graded 316l Stainless Steel/Inconel 625 Alloys Fabricated By Direct Energy Deposition, Xinchang Zhang, Liang Wang, Frank W. Liou, Yang Ren, Cheng Sun

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Functionally graded materials (FGMs) provide a unique solution to combine distinct properties within a single component to enhance its overall performance. Understanding the microstructure and residual stress distribution is particularly important as the material dissimilarity in FGMs can result in high residual stress that affects the mechanical integrity of structural components. This work aims to study the microstructure and residual stress of additively manufactured FGMs and the effects of isothermal annealing. In this study, 316L stainless steel/Inconel 625 FGMs were built by direct energy deposition and characterized by optical and electron microscopy as well as synchrotron-based X-ray diffraction. Our study …


Fine-Grained Activity Classification In Assembly Based On Multi-Visual Modalities, Haodong Chen, Niloofar Zendehdel, Ming-Chuan Leu, Zhaozheng Yin Jan 2023

Fine-Grained Activity Classification In Assembly Based On Multi-Visual Modalities, Haodong Chen, Niloofar Zendehdel, Ming-Chuan Leu, Zhaozheng Yin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Assembly activity recognition and prediction help to improve productivity, quality control, and safety measures in smart factories. This study aims to sense, recognize, and predict a worker's continuous fine-grained assembly activities in a manufacturing platform. We propose a two-stage network for workers' fine-grained activity classification by leveraging scene-level and temporal-level activity features. The first stage is a feature awareness block that extracts scene-level features from multi-visual modalities, including red, green blue (RGB) and hand skeleton frames. We use the transfer learning method in the first stage and compare three different pre-trained feature extraction models. Then, we transmit the feature information …


Nanobubble-Induced Aggregation Of Ultrafine Particles: A Molecular Dynamics Study, Eric Bird, Zhi Liang Jan 2023

Nanobubble-Induced Aggregation Of Ultrafine Particles: A Molecular Dynamics Study, Eric Bird, Zhi Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Nanobubble-induced aggregation (NBIA) of fine and ultrafine particles in liquid is a promising method for enhancing floatation rates in mineral processing, cleaning contaminants from water, and reviving marine ecosystems. Although the current experimental techniques can measure the nanobubble capillary force between two surfaces with controlled approach speed, they are not capable of imaging NBIA dynamics of fine/ultrafine particles by real-time observation with nanoscale spatial resolution. In this work, we use molecular dynamics (MD) simulations to study dynamics of NBIA of Ag particles in a Lennard-Jones fluid system. The molecular-level modeling allows us to study microscopic details of NBIA dynamics that …


Additively Manufactured Carbon Fiber- Reinforced Thermoplastic Composite Mold Plates For Injection Molding Process, C. Bivens, A. Wood, D. Ruble, M. Rangapuram, S. K. Dasari, K. Chandrashekhara, J. Degrange Jan 2023

Additively Manufactured Carbon Fiber- Reinforced Thermoplastic Composite Mold Plates For Injection Molding Process, C. Bivens, A. Wood, D. Ruble, M. Rangapuram, S. K. Dasari, K. Chandrashekhara, J. Degrange

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Polymer injection molding processes have been used to create high-volume parts quickly and efficiently. Injection molding uses mold plates that are traditionally made of very hard tool steels, such as P20 steel, which is extremely heavy and has very long lead times to build new molds. In this study, composite-based additive manufacturing (CBAM) was used to create mold plates using long-fiber carbon fiber and polyether ether ketone (PEEK). These mold plates were installed in an injection molding machine, and rectangular flat plates were produced using Lustran 348 acrylonitrile butadiene styrene (ABS). Tensile and flexural testing was performed on these parts …


Static I-V Based Pim Evaluation For Spring And Fabric-Over-Foam Contacts, Kalkidan W. Anjajo, Yang Xu, Shengxuan Xia, Yuchu He, Haicheng Zhou, Hanfeng Wang, Jonghyun Park, Chulsoon Hwang Jan 2023

Static I-V Based Pim Evaluation For Spring And Fabric-Over-Foam Contacts, Kalkidan W. Anjajo, Yang Xu, Shengxuan Xia, Yuchu He, Haicheng Zhou, Hanfeng Wang, Jonghyun Park, Chulsoon Hwang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Spring Clips and Fabric-Over-Foams (FOFs) Are Widely Used in Mobile Devices for Electrical Connection Purposes. However, the Imperfect Metallic Connections Tend to Induce Passive Intermodulation (PIM), Resulting in a Receiver Sensitivity Degradation, Known as RP Desensitization. Due to the Complexity of the PIM Characterization, there is Not Yet a Way to Evaluate PIM Performance using a Simple Setup for Environments Like Factories. in This Paper, a Current-Voltage (I-V) Behavior-Based PIM Evaluation Method is Proposed and Validated with Various Metallic Contacts and Contact Forces. the Test Results Demonstrated the Feasibility of the PIM Performance Evaluation based on the Measured Static I-V …