Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Aerospace Engineering

Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands Dec 2023

Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands

Graduate Theses and Dissertations

ARKSAT-1 is a CubeSatellite (CubeSat) developed at the University of Arkansas and launched to the International Space Station on SpaceX mission SPX-27 launching from Kennedy Space Center as part of the NASA’s 8th CubeSat Launch Initiative CSLI-8. ARKSAT-1’s payload features a high-powered LED, the Solid State Inflatable Balloon (SSIB) deorbiting system applicable to small satellites, and a series of InfraRed and Visible cameras. To point the LED or take images of desired observational targets, the spacecraft will need to be able to determine its orientation within its orbit, as well as rotate. This will be achieved through the use of …


Simulating Dielectric Barrier Plasma Actuators With Varying Geometries, Cass Wiederkehr May 2023

Simulating Dielectric Barrier Plasma Actuators With Varying Geometries, Cass Wiederkehr

Mechanical Engineering Undergraduate Honors Theses

The idea of Ionic Wind Propulsion has long been a topic of research for whether or not it can be used as a practical power source for flight. MIT researchers proved in 2018 that a plane with zero moving parts powered by Ionic Wind Propulsion was possible, and sustained flight could work with an internal power supply. However, due to the thin wire electrodes required to generate the ion cloud that made such propulsion possible, large amounts of drag rendered the plane extremely inefficient and impractical. Dielectric Barrier Discharge Devices (DBDs) are being investigated as to whether they can serve …


Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting Aug 2022

Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting

Graduate Theses and Dissertations

With the growth in the aerospace industry there has been a trend to optimize the performance of an aircraft by reducing fuel consumption and operational cost. Recent advancements in the field of power electronics have pushed towards the concepts of hybrid electric aircraft also known as more electrical aircrafts. In this work, a custom controller board for an electric aircraft propulsion drive was designed to drive a permanent magnet synchronous motor. Design of the controller board required knowledge of the topology selection and power module selections. Simulations of the system were performed using MATLAB/Simulink to analyze the overall performance of …


Improving The Performance Of An Ead Aircraft By Use Of A Retractable Electrode System, Michael Alexander Fredricks May 2021

Improving The Performance Of An Ead Aircraft By Use Of A Retractable Electrode System, Michael Alexander Fredricks

Mechanical Engineering Undergraduate Honors Theses

Electroaerodynamic (EAD) propulsion is a growing area of research for small, low powered aircraft. Recent tests of EAD aircraft have demonstrated low performance in unpowered, gliding flight. The purpose of this paper is to investigate the effect of a retractable electrode system on the flight performance of an EAD aircraft. An analysis of electrode drag contribution on the MIT ionic wind plane’s performance predicts a maximum lift to drag ratio of 22, with the addition of a retractable electrode system, for a similarly sized and modeled EAD aircraft. An experiment is developed using a prototype aircraft, launcher, and retraction system …


Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy Jul 2020

Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy

Graduate Theses and Dissertations

The goal of this research was to support the development of a novel propulsion system for small satellites (<180 kg) and CubeSats. This was pursued by conducting a collection of studies that were designed to provide engineering data that would be critical in designing a functional prototype. The novel propulsion system was conceived by the author to provide best-in-class performance for the small satellite and CubeSat families of spacecraft. This context presents specific design requirements that the presented technology attempts to satisfy. The most critical among these is high density; the propellant was designed to be stored with high density and the thruster was designed to be as compact as possible. The propulsion system is composed of two primary elements, a propellant generator and a thruster. The propellant generator works by sublimating a solid crystal into vapor and then using this vapor to etch a dense metal. The resulting gaseous byproducts of this reaction are the propellant. This dissertation used xenon difluoride (XeF2) vapor to etch tungsten (W) which react to form xenon gas (Xe) and tungsten hexafluoride (WF6). This approach gave a theoretical propellant storage density 5.40 g/cm3; and 5.17 g/cm3 was demonstrated. The sublimation dynamics of the XeF2 were studied as a function of surface area and temperature and it was found to be suitable for the intended application due to its high effluence rate; that is, it sublimates fast enough to be useful. The sublimation rates are on the order of 10’s of µg/s. The etch rate of XeF2 on W was also studied and found to be suitably fast to provide useful amounts of reactants for use as a propellant, again on the order of 1’s of µg/s. The thruster is an electrostatic radio frequency (RF) ion thruster design and is manufactured with Low Temperature Co-Fired Ceramic (LTCC) materials system and manufacturing technology. Manufacturing samples of the thruster were built at the University of Arkansas in July 2015 and tested at NASA’s Marshall Space Flight Center in May 2018. Testing validated the viability of the LTCC thruster and provided valuable information on how to improve the thruster’s design.


Time-Of-Flight Based Sonic Speed Measurements For Cold Gas Thruster Development, Brandon W. Kempf May 2016

Time-Of-Flight Based Sonic Speed Measurements For Cold Gas Thruster Development, Brandon W. Kempf

Mechanical Engineering Undergraduate Honors Theses

The purpose of this thesis is to explore an experiment developed for validating the usage of a gaseous solution of water and propylene glycol for cold gas propulsion. The experiment involves a “Time of Flight” method of calculating the speed of sound in the gas and the corresponding specific heat ratio using a copper tube, two MEMS microphones, a piezoelectric speaker, and data-acquisition hardware. The experiment was calibrated using the known thermodynamic properties of air. The accuracy of the experiment was found to be within 0.6% for calculations of the speed of sound in air and within 1.0% of the …