Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Power and Energy

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 39

Full-Text Articles in Aerospace Engineering

Efficient Connectivity Management And Path Planning For Iot And Uav Networks, Amirahmad Chapnevis Jan 2024

Efficient Connectivity Management And Path Planning For Iot And Uav Networks, Amirahmad Chapnevis

Theses and Dissertations

This dissertation explores how to better manage resources in mobile networks, especially for enhancing the performance of Unmanned Aerial Vehicles (UAV)-supported IoT networks. We explored ways to set up a flexible communication architecture that can handle large IoT deployments by making good use of mobile core network resources like bearers and data paths. We developed strategies that meet the needs of IoT networks and enhance network performance. We also developed and tested a system that combines traffic from several mobile devices that use the same user identity and network resources within the core mobile network. We used everyday smartphones, SIM …


Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran Dec 2023

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran

Theses and Dissertations

A novel parallelizable probabilistic approach to model eddy currents in AC electromagnets is presented in this research. Consequently, power loss associated with the formation of these eddy currents is estimated and validated using experimental data. Furthermore, predicting the effect of ferromagnetic alternating field enhancement on power loss in the source excitation winding has been an active area of research. Unlike a stationary field, an alternating sinusoidal field diffuses partially into the ferromagnetic material leading to a predictably sub-optimal field enhancement. To model these physics, finite element techniques employ nonlinear iterative solvers which are time consuming. A novel method is developed …


Crazyflie 2.1 Quadcopter Nonlinear System Identification, Nhat V. Nguyen, Hope Storro, John Plimpton Jun 2023

Crazyflie 2.1 Quadcopter Nonlinear System Identification, Nhat V. Nguyen, Hope Storro, John Plimpton

2023 Symposium

Quadcopters (quad) are used widely in many industries with crucial applications such as infrastructure inspection or package delivery. The Crazyflie 2.1 quad from Bitcraze provides an excellent platform for research and development. In this project, our goal is to perform system identification on the Crazyflie to propose a complete model. A gray box method is explored, which includes leveraging the parameters that are already known, to develop a set of equations. Through theory, simulations, and measurements, a complete quadcopter model is developed.


Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin May 2023

Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin

All Dissertations

Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the …


Simulating Dielectric Barrier Plasma Actuators With Varying Geometries, Cass Wiederkehr May 2023

Simulating Dielectric Barrier Plasma Actuators With Varying Geometries, Cass Wiederkehr

Mechanical Engineering Undergraduate Honors Theses

The idea of Ionic Wind Propulsion has long been a topic of research for whether or not it can be used as a practical power source for flight. MIT researchers proved in 2018 that a plane with zero moving parts powered by Ionic Wind Propulsion was possible, and sustained flight could work with an internal power supply. However, due to the thin wire electrodes required to generate the ion cloud that made such propulsion possible, large amounts of drag rendered the plane extremely inefficient and impractical. Dielectric Barrier Discharge Devices (DBDs) are being investigated as to whether they can serve …


Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm May 2023

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting Aug 2022

Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting

Graduate Theses and Dissertations

With the growth in the aerospace industry there has been a trend to optimize the performance of an aircraft by reducing fuel consumption and operational cost. Recent advancements in the field of power electronics have pushed towards the concepts of hybrid electric aircraft also known as more electrical aircrafts. In this work, a custom controller board for an electric aircraft propulsion drive was designed to drive a permanent magnet synchronous motor. Design of the controller board required knowledge of the topology selection and power module selections. Simulations of the system were performed using MATLAB/Simulink to analyze the overall performance of …


Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene Jan 2022

Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene

Dissertations, Master's Theses and Master's Reports

The ability to autonomously dock unmanned ground vehicles plays a key role in mobile micro-grids, where efficient power transfer is paramount. The approach utilized in this work allows for near-field wireless power transfer in remote locations with minimal support. Establishing a micro-grid power system connection autonomously using wireless power eliminates the arduous task of designing a complex, multiple degrees of freedom (MDOF) robotic arm. The work presented in this thesis focuses on both the hardware and software within the micro-grid system. This particular near-field wireless system consists of a primary and secondary set of modules, comprised of Litz wire coils, …


Radiation Effects On Space Solar Cells At Various Earth And Jupiter Orbital Altitudes, Naazneen Rana Aug 2021

Radiation Effects On Space Solar Cells At Various Earth And Jupiter Orbital Altitudes, Naazneen Rana

Discovery Undergraduate Interdisciplinary Research Internship

Solar cells are used as the primary power source for earth-orbiting satellites and as a primary/secondary power source for various missions within the solar system. However, high energy particles from the sun, planetary magnetospheres, and the galaxy can affect the performance and life expectancy of the space solar cell and associated power systems. As the interests for interplanetary travel and the exploration of planets within our solar system increase, the need to understand a device’s performance within a particular planet’s environment is necessary. Therefore, this study will analyze the performance of space solar cells, particularly the SolAero IMM-α, at various …


Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson Jan 2021

Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson

Theses and Dissertations--Mechanical Engineering

In July of 2019, a flight campaign was conducted using semi-autonomous Unmanned Aerial Vehicles (UAVs) at the Port Alma Kruger Energy wind farm in Ontario, Canada, to study various aspects of wind turbine wake evolution. Horizontal transects across the wakes were measured using modified fixed-wing aircraft fitted with a five-hole probe to measure the wind velocity vector. Reference boundary layer conditions were measured by an octocopter with an assortment of mounted sensors flying vertical profiles upstream of the turbines. Three experiments were conducted during the campaign, which consisted of a study on wake behavior during the morning boundary layer transition, …


Electric Power Systems And Components For Electric Aircraft, Damien Lawhorn Jan 2021

Electric Power Systems And Components For Electric Aircraft, Damien Lawhorn

Theses and Dissertations--Electrical and Computer Engineering

Electric aircraft have gained increasing attention in recent years due to their potential for environmental and economic benefits over conventional airplanes. In order to offer competitive flight times and payload capabilities, electric aircraft power systems (EAPS) must exhibit extremely high efficiencies and power densities. While advancements in enabling technologies have progressed the development of high performance EAPS, further research is required.

One challenge in the design of EAPS is determining the best topology to be employed. This work proposes a new graph theory based method for the optimal design of EAPS. This method takes into account data surveyed from a …


Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham Dec 2020

Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham

Master's Theses

This thesis report investigates the effects of low Reynolds number on the power performance of a 3.74 m diameter horizontal axis wind turbine. The small wind turbine was field tested at the Cal Poly Wind Power Research Center to acquire its coefficient of performance, p, vs. tip speed ratio, λ, characteristics. A description of both the wind turbine and test setup are provided. Data filtration and processing techniques were developed to ensure a valid method to analyze and characterize wind power measurements taken in a highly variable environment. The test results demonstrated a significant drop in the …


Performance Testing Of Aero-Naut Camfolding Propellers, Or D. Dantsker, Robert W. Deters, Marco Caccamo, Michael S. Selig Jun 2020

Performance Testing Of Aero-Naut Camfolding Propellers, Or D. Dantsker, Robert W. Deters, Marco Caccamo, Michael S. Selig

Publications

The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. By examining a variety of …


Trajectory Simulation With Battery Modeling For Electric Powered Unmanned Aerial Vehicles, Ege Konuk Apr 2020

Trajectory Simulation With Battery Modeling For Electric Powered Unmanned Aerial Vehicles, Ege Konuk

Mechanical & Aerospace Engineering Theses & Dissertations

Fixed wing electric powered unmanned aerial vehicles (UAVs) has been widely adopted for the last decade in a great number of applications. One of the primary advantages to fixed wing versus multi-rotor designs is the efficiency in forward flight with best possible range and endurance capabilities. In electrically powered air vehicles range and endurance are monitored by the State-of-Charge (SOC) of the battery. To understand the capabilities of the battery, discharge experiments can be conducted in lab environments; however, sometimes the results are difficult to integrate in flight simulations.

In this thesis, a trajectory simulation is developed that can estimate …


Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles Dec 2019

Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles

Master's Theses

Collision with orbital debris poses a serious threat to spacecraft and astronauts. Hypervelocity impacts resulting from collisions mean that objects with a mass less than 1g can cause mission-ending damage to spacecraft. A means of shielding spacecraft against collisions is necessary. A means of testing candidate shielding methods for their efficacy in mitigating hypervelocity impacts is therefore also necessary. Cal Poly’s Electromagnetic Railgun was designed with the goal of creating a laboratory system capable of simulating hypervelocity (≥ 3 km/s) impacts. Due to several factors, the system was not previously capable of high-velocity (≥ 1 km/s) tests. A deficient projectile …


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey May 2019

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis, the lowest temperature …


Mathematical Programming Approach For The Design Of Satellite Power Systems, Allen Flath Iii Jan 2019

Mathematical Programming Approach For The Design Of Satellite Power Systems, Allen Flath Iii

Theses and Dissertations--Electrical and Computer Engineering

Satellite power systems can be understood as islanded dc microgrids supplied by specialized and coordinated solar cell arrays augmented by electrochemical battery systems to handle high-power loads and periods of eclipse. The periodic availability of power, the limited capacity of batteries, and the dependence of all mission service on power consumption create a unique situation in which temporal power and energy scarcity exist. A multi-period model of an orbital satellite power system’s performance over a mission’s duration can be constructed. A modular power system architecture is used to characterize the system’s constraints. Using mathematical programming, an optimization problem can be …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …


Design Of Dc-Link Vscf Ac Electrical Power System For The Embraer 190/195 Aircraft, Eduardo Francis Carvalho Freitas, Nihad E. Daidzic Sep 2017

Design Of Dc-Link Vscf Ac Electrical Power System For The Embraer 190/195 Aircraft, Eduardo Francis Carvalho Freitas, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

A proposed novel DC-Link VSCF AC-DC-AC electrical power system converter for Embraer 190/195 transport category airplane is presented. The proposed converter could replace the existing conventional system based on the CSCF IDGs. Several contemporary production airplanes already have VSCF as a major or backup source of electrical power. Problems existed with the older VSCF systems in the past; however, the switched power electronics and digital controllers have matured and can be now, in our opinion, safely integrated and replace existing constant-speed hydraulic transmissions powering CSCF AC generators. IGBT power transistors for medium-level power conversion and relatively fast efficient switching are …


A Method For Evaluating Aircraft Electric Power System Sizing And Failure Resiliency, Cory Kenneth Kross Jan 2017

A Method For Evaluating Aircraft Electric Power System Sizing And Failure Resiliency, Cory Kenneth Kross

Master's Theses

With the More Electric Aircraft paradigm, commercial commuter aircraft are increasing the size and complexity of electrical power systems by increasing the number of electrical loads. With this increase in complexity comes a need to analyze electrical power systems using new tools. The Hybrid Power System Optimizer (HyPSO) developed by Airbus SAS is a simulator designed to analyze new aircraft power systems. This thesis project will first provide a method to assess the reliability of complex aircraft electrical power systems before and after failure and reconfiguration events. Next, an add-on to HyPSO is developed to integrate the previously developed reliability …


A Study Of Ion And Electron Responses To A Dc Electric Field In A Hydrocarbon Flame, Stewart Jacobs Oct 2015

A Study Of Ion And Electron Responses To A Dc Electric Field In A Hydrocarbon Flame, Stewart Jacobs

Von Braun Symposium Student Posters

No abstract provided.


Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green Sep 2015

Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green

Master's Theses

Small electric uninhabited aerial vehicles (UAV) represent a rapidly expanding market requiring optimization in both efficiency and weight; efficiency is critical during cruise or loiter where the vehicle operates at part power for up to 99% of the mission time. Of the four components (battery, motor, propeller, and electronic speed controller (ESC)) of the electric propulsion system used in small UAVs, the ESC has no accepted performance model and almost no published performance data. To collect performance data, instrumentation was developed to measure electrical power in and out of the ESC using the two wattmeter method and current sense resistors; …


Propulsion And P.I Control Systems For Sae Aircraft, Ervin Meneses Jun 2015

Propulsion And P.I Control Systems For Sae Aircraft, Ervin Meneses

Honors Theses

This thesis analyzes the integration and performance of a P.I control system within the SAE Aero Design Competition aircraft. This year the Union College Aero Design team will be competing in the Society of Automotive Engineers (SAE) Aero Design “Regular Class” Competition, which encompasses the design and production of a large‐scale remote controlled aircraft that must meet predetermined power and size constraints. The overall objective of the competition is to have the designed aircraft carry a maximum amount weight within a 200 feet runway while staying below a 1000W power limit. Each competitor must integrate a power limiter into their …


Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen Apr 2015

Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative aims to create an Open Prototype for Educational Nanosats (OPEN) framework (see [1]) for a complete 1-U CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg spacecraft) with a total parts cost of less than $5,000 [2]. In order to supply all spacecraft subsystems with power, an electrical power system (EPS) has been implemented. The EPS generates power using multiple solar panels, stores it in batteries and regulates it to provide continuous levels of power to all of the subsystems of the spacecraft. The EPS has a crucial role in the spacecraft …


Electrical Power System For An Open Hardware Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen Mar 2015

Electrical Power System For An Open Hardware Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen

Jeremy Straub

The OpenOrbiter program is developing a complete set of CubeSat hardware and software to facilitate the development of a 1-U CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg spacecraft) with a parts cost of less than $5,000. This poster covers the electrical power system (EPS) for that spacecraft. The EPS is an assemblage of components that supplies all spacecraft subsystems with power, while performing health assessment of the battery and electrical buses. The EPS has a crucial role in the spacecraft and thus has to be developed and tested with extreme care.

The EPS generates power using …


Characterization And Testing Of A 5.8 Kv Sic Pin Diode For Electric Space Propulsion Applications, Alexandra Toftul Aug 2014

Characterization And Testing Of A 5.8 Kv Sic Pin Diode For Electric Space Propulsion Applications, Alexandra Toftul

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Inductive Pulsed Plasma Thrusters (IPPTs) are a type of in-space propulsion that has multiple advantages over conventional chemical propulsion for long-duration, deep space missions. Existing IPPT prototypes utilize spark gap switches, however these are subject to corrosion problems that make them unreliable for long-term use. Recent advances in solid state switching technology have opened up a variety of switching options that could provide greater reliability, controllability, and increased energy efficiency. Taking advantage of this, a novel thruster drive circuit topology containing a high-power silicon controlled rectifier (SCR) and series fast recovery diode (FRD) is proposed that is expected to increase …


Dual High-Voltage Power Supply For Use On Board A Cubesat, Nicholas Weiser Jun 2014

Dual High-Voltage Power Supply For Use On Board A Cubesat, Nicholas Weiser

Master's Theses

Since their conception in 1999, CubeSats have come and gone a long way. The first few that went into space were more of a “proof of concept,” and were more focused on sending simple data and photographs back to Earth. Since then, vast improvements have been made by over 40 universities and private firms, and now CubeSats are beginning to look towards interplanetary travel. These small satellites could provide a cost effective means of exploring the galaxy, using off the shelf components and piggy-backing on other launch vehicles with more expensive payloads. However, CubeSats are traditionally launched into Low Earth …


Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr. Jun 2013

Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr.

Master's Theses

This paper describes the changes made from Cal Poly’s initial railgun system, the Mk. 1 railgun, to the Mk. 1.1 system, as well as the design, fabrication, and testing of a newer and larger Mk. 2 railgun system. The Mk. 1.1 system is developed as a more efficient alteration of the original Mk. 1 system, but is found to be defective due to hardware deficiencies and failure, as well as unforeseen efficiency losses. A Mk. 2 system is developed and built around donated hardware from the Naval Postgraduate School. The Mk. 2 system strove to implement an efficient, augmented, electromagnetic …


Aeroelastic Energy Harvesting Using A Nonlinear Electromagnetic Oscillator, Katherine Bender, Ndungu Muturi, Alex Spies, Christopher Lee Apr 2013

Aeroelastic Energy Harvesting Using A Nonlinear Electromagnetic Oscillator, Katherine Bender, Ndungu Muturi, Alex Spies, Christopher Lee

Christopher Lee

Results are presented from the design, fabrication and testing of an electromagnetic-inductor device to convert aeroelastic-induced oscillations of an airfoil into electricity. The energy harvester consists of three magnets configured such that the force-displacement relationship can be described by a fifth-degree polynomial. the integration of the harvester into a two-degree-of-freedom, pitch/plunge airfoil system introduces nonlinear stiffness into the plunge direction. This nonlinearity gives rise to limit cycle oscillations which, in turn, are converted to electric power by the harvester. Experimental measurements from wind tunnel tests are compared to predictions of limit cycle response and resulting power generation using a two-degree-of-freedom …


The Architecture Selection, Design, And Discharge Modeling Of A Passive Compensation, Iron-Core, Two-Phase, Permanent Magnet Compulsator To Power A Small Railgun Platform, Collin Macgregor Dec 2012

The Architecture Selection, Design, And Discharge Modeling Of A Passive Compensation, Iron-Core, Two-Phase, Permanent Magnet Compulsator To Power A Small Railgun Platform, Collin Macgregor

Aerospace Engineering

The goal of this project was to design and build a compensated pulsed alternator, or compulsator, to power the Cal Poly Electromagnetic Railgun Mark 1.1. This project examines the feasibility of implementing mechanical pulsed power supplies for repeatable use with a railgun load for orbital debris hypervelocity testing. The final system architecture chosen was a passively compensated, iron-core, 2-phase, permanent magnet compulsator. The Cal Poly Compulsator will be capable of storing 45 kJ of mechanical energy with a peak operating speed of 5,000 rpm at 190 V. Theoretical calculations resulted in the following predicted electrical performance values: a peak output …